Experiencing Data w/ Brian T. O’Neill  (UX for AI Data Products, SAAS Analytics, Data Product Management) cover image

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

Latest episodes

undefined
Aug 22, 2023 • 22min

124 - The PiCAA Framework: My Method to Generate ML/AI Use Cases from a UX Perspective

In this podcast, the speaker introduces the PiCAA Framework for generating ML/AI use cases from a UX perspective. They emphasize the importance of brainstorming ideas, considering human factors, and involving cross-functional teams. The Pico and PiCAA frameworks are discussed, along with examples of AI use cases. The risks of automation and the importance of a human-centered approach are also highlighted.
undefined
24 snips
Aug 8, 2023 • 27min

123 - Learnings From the CDOIQ Symposium and How Data Product Definitions are Evolving with Brian T. O’Neill

Today I’m wrapping up my observations from the CDOIQ Symposium and sharing what’s new in the world of data. I was only able to attend a handful of sessions, but they were primarily ones tied to the topic of data products, which, of course, brings us to “What’s a data product?” During this episode, I cover some of what I’ve been hearing about the definition of this word, and I also share my revised v2 definition. I also walk through some of the questions that CDOs and fellow attendees were asking at the sessions I went to and a few reactions to those questions. Finally, I announce an exciting development on the launch of the Data Product Leadership Community.   Highlights/ Skip to:   Brian introduces the topic for this episode, including his wrap-up of the CDOIQ Symposium (00:29) The general impressions Brian heard at the Symposium, including a focus on people & culture and an emphasis on data products (01:51) The three main areas the definition of a data product covers according to Brian’s observations (04:43) Brian describes how companies are looking for successful data product development models to follow and explores where new Data Product Managers are coming from (07:17) A methodology that Brian feels leads to a successful data product team (10:14) How Brian feels digital-native folks see the world of data products differently (11:29) The topic of Data Mesh and Human-Centered Design and how it came up in two presentations at the CDOIQ Symposium (13:24) The rarity of design and UX being talked about at data conferences, and why Brian feels that is the case (15:24) Brian’s current definition of a data product and how it’s evolved from his V1 definition (18:43) Brian lists the main questions that were being asked at CDOIQ sessions he attended around data products (22:19) Where to find answers to many of the questions being asked about data products and an update on the Data Product Leader Community that he will launch in August 2023 (24:28) Quotes from Today’s Episode “I think generally what’s happening is the technology continues to evolve, I think it generally continues to get easier, and all of the people and cultural parts and the change management and all of that, that problem just persists no matter what. And so, I guess the question is, what are we going to do about it?” — Brian T. O’Neill (03:11) “The feeling I got from the questions [at the CDOIQ Symposium], … and particularly the ones that were talking about the role of data product management and the value of these things was, it’s like they’re looking for a recipe to follow.” — Brian T. O’Neill (07:17) “My guess is people are just kind of reading up about it, self-training a bit, and trying to learn how to do product on their own. I think that’s how you learn how to do stuff is largely through trial and error. You can read books, you can do all that stuff, but beginning to do it is part of it.” — Brian T. O’Neill (08:57) “I think the most important thing is that data is a raw ingredient here; it’s a foundation piece for the solution that we’re going to make that’s so good, someone might pay to use it or trade something of value to use it. And as long as that’s intact, I think you’re kind of checking the box as to whether it’s a data product.” — Brian T. O’Neill (12:13)   “I also would say on the data mesh topic, the feeling I got from people who had been to this conference before was that was quite a hyped thing the last couple years. Now, it was not talked about as much, but I think now they’re actually seeing some examples of this working.” — Brian T. O’Neill (16:25)   “My current v2 definition right now is, ‘A data product is a managed, end-to-end software solution that organizes, refines, or transforms data to solve a problem that’s so important customers would pay for it or exchange something of value to use it.’” — Brian T. O’Neill (19:47)   “We know [the product is] of value because someone was willing to pay for it or exchange their time or switch from their old way of doing things to the new way because it has that inherent benefit baked in. That’s really the most important part here that I think any data product manager should fully be aligned with.” — Brian T. O’Neill (21:35)   Links Episode 67 Episode 110 The Definition of Data Product The Data Product Leadership Community Ask me a question (below the recent episodes)
undefined
18 snips
Jul 25, 2023 • 34min

122 - Listener Questions Answered: Conducting Effective Discovery for Data Products with Brian T. O’Neill

Today I’m answering a question that was submitted to the show by listener Will Angel, who asks how he can prioritize and scale effective discovery throughout the data product development process. Throughout this episode, I explain why discovery work is a process that should be taking place throughout the lifecycle of a project, rather than a defined period at the start of the project. I also emphasize the value of understanding the benefit users will see from the product as the main goal, and how to streamline the effectiveness of the discovery process.  Highlights/ Skip to: Brian introduces today’s topic, Discovery with Data Products, with a listener question (00:28) Why Brian sees discovery work as something that is ongoing throughout the lifecycle of a project (01:53) Brian tackles the first question of how to avoid getting killed by the process overhead of discovery and prioritization (03:38) Brian discusses his take on the question, “What are the ultimate business and user benefits that the beneficiaries hope to get from the product?”(06:02) The value Brian sees in stating anti-goals and anti-personas (07:47) How creative work is valuable despite the discomfort of not being execution-oriented (09:35) Why customer and stakeholder research activities need to be ongoing efforts (11:20) The two modes of design that Brian uses and their distinct purposes (15:09) Brian explains why a clear strategy is critical to proper prioritization (19:36) Why doing a few things really well usually beats out delivering a bunch of features and products that don’t get used (23:24) Brian on why saying “no” can be a gift when used correctly (27:18) How you can join the Data Product Leadership Community for more dialog like this and how to submit your own questions to the show (32:25) Quotes from Today’s Episode “Discovery work, to me is something that largely happens up front at the beginning of a project, but it doesn’t end at the beginning of the project or product initiative, or whatever it is that you’re working on. Instead, I think discovery is a continual thing that’s going on all the time.” — Brian T. O’Neill (01:57) “As tooling gets easier and easier and we need to stand up less infrastructure and basic pipelining in order to get from nothing to something, I think more of the work simply does become the discovery part of the work. And that is always going to feel somewhat inefficient because by definition it is.” — Brian T. O’Neill (04:48) “Measuring [project management metrics] does not tell us whether or not the product is going to be valuable. It just tells us how fast are we writing the code and doing execution against something that may or may not actually have any value to the business at all.” — Brian T. O’Neill (07:33) “How would you measure an improvement in the beneficiaries' lives? Because if you can improve their life in some way—and this often means me at work— the business value is likely to follow there.” — Brian T. O’Neill (18:42) “Without a clear strategy, you’re not going to be able to do prioritization work efficiently because you don’t know what success looks like.” — Brian T. O’Neill (19:49) “Doing a few things really well probably beats delivering a lot of stuff that doesn’t get used. There’s little point in a portfolio of data products that is really wide, but it’s very shallow in terms of value.” — Brian T. O’Neill (23:27) “Anytime you’re going to be changing behavior or major workflows, the non-technical costs and work increase. And we have to figure out, ‘How are we going to market this and evangelize it and make people see the value of it?’ These types of behavior changes are really hard to implement and they need to be figured out during the design of the solution — not afterwards.” — Brian T. O’Neill (26:25) Links designingforanalytics.com/podcast: https://designingforanalytics.com/podcast designingforanalytics.com/community: https://designingforanalytics.com/community
undefined
6 snips
Jul 11, 2023 • 40min

121 - How Sainsbury’s Head of Data Products for Analytics and ML Designs for User Adoption with Peter Everill

Today I’m chatting with Peter Everill, who is the Head of Data Products for Analytics and ML Designs at the UK grocery brand, Sainsbury’s. Peter is also a founding member of the Data Product Leadership Community. Peter shares insights on why his team spends so much time conducting discovery work with users, and how that leads to higher adoption and in turn, business value. Peter also gives us his in-depth definition of a data product, including the three components of a data product and the four types of data products he’s encountered. He also shares the 8-step product management methodology that his team uses to develop data products that truly deliver value to end users. Pete also shares the #1 resource he would invest in right now to make things better for his team and their work. Highlights/ Skip to:   I introduce Peter, who I met through the Data Product Leadership Community (00:37) What the data team structure at Sainsbury’s looks like and how Peter wound up working there (01:54) Peter shares the 8-step product management methodology that has been developed by his team and where in that process he spends most of his time (04:54) How involved the users are in Peter’s process when it comes to developing data products (06:13) How Peter was able to ensure that enough time is taken on discovery throughout the design process (10:03) Who on Peter’s team is doing the core user research for product development (14:52) Peter shares the three things that he feels make data product teams successful (17:09) How Peter defines a data product, including the three components of a data product and the four types of data products (18:34) Peter and I discuss the importance of spending time in discovery (24:25) Peter explains why he measures reach and impact as metrics of success when looking at implementation (26:18) How Peter solves for the gap when handing off a product to the end users to implement and adopt (29:20) How Peter hires for data product management roles and what he looks for in a candidate (33:31) Peter talks about what roles or skills he’d be looking for if he was to add a new person to his team (37:26) Quotes from Today’s Episode “I’m a big believer that the majority of analytics in its simplest form is improving business processes and decisions. A big part of our discovery work is that we align to business areas, business divisions, or business processes, and we spend time in that discovery space actually mapping the business process. What is the goal of this process? Ultimately, how does it support the P&L?” — Peter Everill (12:29) “There’s three things that are successful for any organization that will make this work and make it stick. The first is defining what you mean by a data product. The second is the role of a data product manager in the organization and really being clear what it is that they do and what they don’t do. … And the third thing is their methodology, from discovery through to delivery. The more work you put upfront defining those and getting everyone trained and clear on that, I think the quicker you’ll get to an organization that’s really clear about what it’s delivering, how it delivers, and who does what.” – Peter Everill (17:31)   “The important way that data and analytics can help an organization firstly is, understanding how that organization is performing. And essentially, performance is how well processes and decisions within the organization are being executed, and the impact that has on the P&L.” – Peter Everill (20:24)   “The great majority of organizations don’t allocate that percentage [20-25%] of time to discovery; they are jumping straight into solution. And also, this is where organizations typically then actually just migrate what already exists from, maybe, legacy service into a shiny new cloud platform, which might be good from a defensive data strategy point of view, but doesn’t offer new net value—apart from speed, security and et cetera of the cloud. Ultimately, this is why analytics organizations aren’t generally delivering value to organizations.” – Peter Everill (25:37)   “The only time that value is delivered, is from a user taking action. So, the two metrics that we really focus on with all four data products [are] reach [and impact].” – Peter Everill (27:44)   “In terms of benefits realization, that is owned by the business unit. Because ultimately, you’re asking them to take the action. And if they do, it’s their part of the P&L that’s improving because they own the business, they own the performance. So, you really need to get them engaged on the release, and for them to have the superusers, the champions of the product, and be driving voice of the release just as much as the product team.” – Peter Everill (30:30)   On hiring DPMs: “Are [candidates] showing the aptitude, do they understand what the role is, rather than the experience? I think data and analytics and machine learning product management is a relatively new role. You can’t go on LinkedIn necessarily, and be exhausted with a number of candidates that have got years and years of data and analytics product management.” – Peter Everill (36:40) Links LinkedIn: https://www.linkedin.com/in/petereverill/
undefined
5 snips
Jun 27, 2023 • 42min

120 - The Portfolio Mindset: Data Product Management and Design with Nadiem von Heydebrand (Part 2)

Today I’m continuing my conversation with Nadiem von Heydebrand, CEO of Mindfuel. In the conclusion of this special 2-part episode, Nadiem and I discuss the role of a Data Product Manager in depth. Nadiem reveals which fields data product managers are currently coming from, and how a new data product manager with a non-technical background can set themselves up for success in this new role. He also walks through his portfolio approach to data product management, and how to prioritize use cases when taking on a data product management role. Toward the end, Nadiem also shares personal examples of how he’s employed these strategies, why he feels it’s so important for engineers to be able to see and understand the impact of their work, and best practices around developing a data product team.  Highlights / Skip to: Brian introduces Nadiem and gives context for why the conversation with Nadiem led to a two-part episode (00:35) Nadiem summarizes his thoughts on data product management and adds context on which fields he sees data product managers currently coming from (01:46) Nadiem’s take on whether job listings for data product manager roles still have too many technical requirements (04:27) Why some non-technical people fail when they transition to a data product manager role and the ways Nadiem feels they can bolster their chances of success (07:09) Brian and Nadiem talk about their views on functional data product team models and the process for developing a data product as a team (10:11) When Nadiem feels it makes sense to hire a data product manager and adopt a portfolio view of your data products (16:22) Nadiem’s view on how to prioritize projects as a new data product manager (19:48) Nadiem shares a story of when he took on an interim role as a head of data and how he employed the portfolio strategies he recommends (24:54) How Nadiem evaluates perceived usability of a data product when picking use cases (27:28) Nadiem explains why understanding go-to-market strategy is so critical as a data product manager (30:00) Brian and Nadiem discuss the importance of today’s engineering teams understanding the value and impact of their work (32:09) How Nadiem and his team came up with the idea to develop a SaaS product for data product managers (34:40) Quotes from Today’s Episode “So, data product management [...] is a combination of different capabilities [...]  [including] product management, design, data science, and machine learning. We covered this in viability, desirability, feasibility, and datability. So, these are four dimensions [that] you combine [...] together to become a data product manager.” — Nadiem von Heydebrand (02:34)   “There is no education for data product management today, there’s no university degree. ... So, there’s nobody out there—from my perspective—who really has all the four dimensions from day one. It’s more like an evolution: you’re coming from one of the [parallel business] domains or from one of the [parallel business] fields and then you extend your skill set over time.” — Nadiem von Heydebrand (03:04) “If a product manager has very good communication skills and is able to break down the needs in a proper way or in a good understandable way to its tech lead, or its engineering lead or data science lead, then I think it works out super well. If this bridge is missing, then it becomes a little bit tricky because then the distance between the product manager and the development team is too far.” – Nadiem von Heydebrand (09:10)   “I think every data leader out there has an Excel spreadsheet or a list of prioritized use cases or the most relevant use cases for the business strategy… You can think about this list as a portfolio. You know, some of these use cases are super valuable; some of these use cases maybe will not work out, and you have to identify those which are bringing real return on investment when you put effort in there.” – Nadiem von Heydebrand (19:01)   “I’m not a magician for data product management. I just focused on a very strategic view on my portfolio and tried to identify those cases and those data products where I can believe I can easily develop them, I have a high degree of adoption with my lines of business, and I can truly measure the added revenue and the impact.” – Nadiem von Heydebrand (26:31)   “As a true data product manager, from my point of view, you are someone who is empathetic for the lines of businesses, to understand what their underlying needs and what the problems are. At the same time, you are a business person. You try to optimize the portfolio for your own needs, because you have business goals coming from your leadership team, from your head of data, or even from the person above, the CTO, CIO, even CEO. So, you want to make sure that your value contribution is always transparent, and visible, measurable, tangible.” – Nadiem von Heydebrand (29:20)   “If we look into classical product management, I mean, the product manager has to understand how to market and how to go to the market. And it’s this exactly the same situation with data product managers within your organization. You are as successful as your product performs in the market. This is how you measure yourself as a data product manager. This is how you define success for yourself.” – Nadiem von Heydebrand (30:58) Links Mindfuel: https://mindfuel.ai/ LinkedIn: https://www.linkedin.com/in/nadiemvh/ Delight Software - the SAAS tool for data product managers to manage their portfolio of data products: https://delight.mindfuel.ai
undefined
7 snips
Jun 13, 2023 • 37min

119 - Skills vs. Roles: Data Product Management and Design with Nadiem von Heydebrand (Part 1)

The conversation with my next guest was going so deep and so well…it became a two part episode! Today I’m chatting with Nadiem von Heydebrand, CEO of Mindfuel. Nadiem’s career journey led him from data science to data product management, and in this first, we will focus on the skills of data product management (DPM), including design. In part 2, we jump more into Nadiem’s take on the role of the DPM. Nadiem gives actionable insights into the realities of data product management, from the challenges of actually being able to talk to your end users, to focusing on the problems and unarticulated needs of your users rather than solutions. Nadiem and I also discuss how data product managers oversee a portfolio of initiatives, and why it’s important to view that portfolio as a series of investments. Nadiem also emphasizes the value of having designers on a data team, and why he hopes we see more designers in the industry.  Highlights/ Skip to: Brian introduces Nadiem and his background going from data science to data product management (00:36) Nadiem gives not only his definition of a data product, but also his related definitions of ‘data as product,’ ‘data as information,’ and ‘data as a model’ products (02:19) Nadiem outlines the skill set and activities he finds most valuable in a data product manager (05:15) How a data organization typically functions and the challenges a data team faces to prove their value (11:20) Brian and Nadiem discuss the challenges and realities of being able to do discovery with the end users of data products (17:42) Nadiem outlines how a portfolio of data initiatives has a certain investment attached to it and why it’s important to generate a good result from those investments (21:30) Why Nadiem wants to see more designers in the data product space and the problems designers solve for data teams (25:37) Nadiem shares a story about a time when he wished he had a designer to convert the expressed needs of the  business into the true need of the customer (30:10) The value of solving for the unarticulated needs of your product users, and Nadiem shares how focusing on problems rather than solutions helped him (32:32) Nadiem shares how you can connect with him and find out more about his company, Mindfuel (36:07) Quotes from Today’s Episode “The product mindset already says it quite well. When you look into classical product management, you have something called the viability, the desirability, the feasibility—so these are three very classic dimensions of product management—and the fourth dimension, we at Mindfuel define for ourselves and for applications are, is the datability.” — Nadiem von Heydebrand (06:51) “We can only prove our [data team’s] value if we unlock business opportunities in their [clients’] lines of businesses. So, our value contribution is indirect. And measuring indirect value contribution is very difficult in organizations.” — Nadiem von Heydebrand (11:57) “Whenever we think about data and analytics, we put a lot of investment and efforts in the delivery piece. I saw a study once where it said 3% of investments go into discovery and 90% of investments go into delivery and the rest is operations and a little bit overhead and all around. So, we have to balance and we have to do proper discovery to understand what problem do we want to solve.” — Nadiem von Heydebrand (13:59) “The best initiatives I delivered in my career, and also now within Mindfuel, are the ones where we try to build an end responsibility from the lines of businesses, among the product managers, to PO, the product owner, and then the delivery team.” – Nadiem von Heydebrand (17:00) “As a consultant, I typically think in solutions. And when we founded Mindfuel, my co-founder forced me to avoid talking about the solution for an entire ten months. So, in whatever meeting we were sitting, I was not allowed to talk about the solution, but only about the problem space.”  – Nadiem von Heydebrand (34:12) “In scaled organizations, data product managers, they typically run a portfolio of data products, and each single product can be seen a little bit like from an investment point of view, this is where we putting our money in, so that’s the reason why we also have to prioritize the right use cases or product initiatives because typically we have limited resources, either it is investment money, people, resources or our time.” – Nadiem von Heydebrand (24:02) “Unfortunately, we don’t see enough designers in data organizations yet. So, I would love to have more design people around me in the data organizations, not only from a delivery perspective, having people building amazing dashboards, but also, like, truly helping me in this kind of discovery space.” – Nadiem von Heydebrand (26:28) Links Mindfuel: https://mindfuel.ai/ Personal LinkedIn: https://www.linkedin.com/in/nadiemvh/ Mindfuel LinkedIn: https://www.linkedin.com/company/mindfuelai/
undefined
23 snips
May 30, 2023 • 49min

118 - Attracting Talent and Landing a Role in Data Product Management with Kyle Winterbottom

Today I’m chatting with Kyle Winterbottom, who is the owner of Orbition Group and an advisor/recruiter for companies who are hiring top talent in the data industry. Kyle and I discuss whether the concept of data products has meaningful value to companies, or if it’s in a hype cycle of sorts. Kyle then shares his views on what sets the idea of data products apart from other trends, the well-paid opportunities he sees opening up for product leaders in the data industry, and why he feels being able to increase user adoption and quantify the business impact of your work is also relevant in a candidate’s ability to negotiate higher pay. Kyle and I also discuss the strange tendency for companies to mistakenly prioritize technical skills for these roles, the overall job market for data product leaders, average compensation numbers, and what companies can do to attract this talent. Highlights/ Skip to: Kyle introduces himself and his company, Orbition Group (01:02) Why Brian invited Kyle on the show to discuss the recruitment of technical talent for data & analytics teams (02:00) Kyle shares what’s causing companies to build out data product teams (04:49) The reason why viewing data as a product seems to be driving better adoption in Kyle’s view (07:22) Does Kyle feel that the concept of data products is mostly hype or meaningful? (11:26) The different levels of maturity Kyle sees in organizations that are approaching him for help hiring data product talent, and how soft skills are often overlooked (15:37) Kyle’s views on who is successfully landing data product manager roles and how that’s starting to change (23:20) What Kyle’s observations are on the salary bands for data product manager roles and the type of money people can make in this space (25:41) Brian and Kyle discuss how the skills of DPMs can help these leaders improve earning potential (30:30) Kyle’s observations and advice to companies seeking to improve the data product talent they attract (38:12) How listeners can learn more about Kyle and Orbition Group (47:55) Quotes from Today’s Episode “I think data products, obviously, there’s starting to get a bit of hype around it, which I’ve got no doubt will start to lead organizations to look down that route, just because they see and hear about other organizations doing it. ... [but] what it’s helping organizations to do is to drive adoption.” — Kyle Winterbottom (05:45) “I think we’re at a point now where it’s becoming more and more clear, day by day, week by week, the there’s more to [the data industry] than just the building of stuff.” – Kyle Winterbottom (12:56) “The whole soft skills piece is becoming absolutely integral because it’s become—you know, it’s night and day now, between the people that are really investing in themselves in that area and how quickly they’re progressing in their career because of that. But yeah, most organizations don’t even think about that.” – Kyle Winterbottom (18:49) “I think nine times out of ten, most businesses overestimate the importance of the technical stuff practically in every role. … Even data analysts, data scientists, all they’re bothered about is the tech stack that they’ve used, [but] there’s a lot more to it than just the tech that they use.” – Kyle Winterbottom (22:56) “There’s probably a big opportunity for really good product people to move into the data space because it’s going to be well paid with lots of opportunity. [It’s] quite an interesting space.” – Kyle Winterbottom (24:05) “As soon as you get to a point where if you can help to drive adoption and then you can quantify the commercial benefit of that adoption to the organization, that probably puts you up near the top in terms of percentile of being important to a data organization.” – Kyle Winterbottom (32:21) “We’re forever talking in our industry about the importance of storytelling. Yeah, I’ve never seen a business once tell a good story about how good it is to work for them, specifically in regards to their data analytics team and telling a story about that.” – Kyle Winterbottom (39:37) Links Kyle’s LinkedIn: https://www.linkedin.com/in/kylewinterbottom/ Orbition Group: https://www.orbitiongroup.com
undefined
7 snips
May 16, 2023 • 40min

117 - Phil Harvey, Co-Author of “Data: A Guide to Humans,” on the Non-Technical Skills Needed to Produce Valuable AI Solutions

Today I’m chatting with Phil Harvey, co-author of Data: A Guide to Humans and a technology professional with 23 years of experience working with AI and startups. In his book, Phil describes his philosophy of how empathy leads to more successful outcomes in data product development and the journey he took to arrive at this perspective. But what does empathy mean, and how do you measure its success? Brian and Phil dig into those questions, and Phil explains why he feels cognitive empathy is a learnable skill that one can develop and apply. Phil describes some leading indicators that empathy is needed on a data team, as well as leading indicators that a more empathetic approach to product development is working. While I use the term “design” or “UX” to describe a lot of what Phil is talking about, Phil actually has some strong opinions about UX and shares those on this episode. Phil also reveals why he decided to write Data: A Guide to Humans and some of the experiences that helped shape the book’s philosophy.  Highlights/ Skip to: Phil introduces himself and explains how he landed on the name for his book (00:54)  How Phil met his co-author, Noelia Jimenez Martinez, and the reason they started writing Data: A Guide to Humans (02:31) Phil unpacks his understanding of how he defines empathy, why it leads to success on AI projects, and what success means to him (03:54) Phil walks through a couple scenarios where empathy for users and stakeholders was lacking and the impacts it had (07:53) The work Phil has done internally to get comfortable doing the non-technical work required to make ML/AI/data products successful  (13:45) Phil describes some indicators that data teams can look for to know their design strategy is working (17:10) How Phil sees the methodology in his book relating to the world of UX (user experience) design (21:49) Phil walks through what an abstract concept like “empathy” means to him in his work and how it can be learned and applied as a practical skill (29:00) Quotes from Today’s Episode “If you take success in itself, this is about achieving your intended outcomes. And if you do that with empathy, your outcomes will be aligned to the needs of the people the outcomes are for. Your outcomes will be accepted by stakeholders because they’ll understand them.” — Phil Harvey (05:05) “Where there’s people not discussing and not considering the needs and feelings of others, you start to get this breakdown, data quality issues, all that.” – Phil Harvey (11:10)   “I wanted to write code; I didn’t want to deal with people. And you feel when you can do technical things, whether it’s machine-learning or these things, you end up with the ‘I’ve got a hammer and now everything looks like a nail problem.’ But you also have the [attitude] that my programming will solve everything.” – Phil Harvey (14:48)   “This is what startup-land really taught me—you can’t do everything. It’s very easy to think that you can and then burn yourself out. You need a team of people.” – Phil Harvey (15:09)   “Let’s listen to the users. Let’s bring that perspective in as opposed to thinking about aligning the two perspectives. Because any product is a change. You don’t ride a horse then jump in a car and expect the car to work like the horse.” – Phil Harvey (22:41)   “Let’s say you’re a leader in this space. … Listen out carefully for who’s complaining about who’s not listening to them. That’s a first early signal that there’s work to be done from an empathy perspective.” – Phil Harvey (25:00)   “The perspective of the book that Noelia and I have written is that empathy—and cognitive empathy particularly—is also a learnable skill. There are concrete and real things you can practice and do to improve in those skills.” – Phil Harvey (29:09) Links Data: A Guide to Humans: https://www.amazon.com/Data-A-Guide-to-Humans/dp/1783528648 Twitter: https://twitter.com/codebeard LinkedIn: https://www.linkedin.com/in/philipdavidharvey/ Mastodon: https://mastodonapp.uk/@codebeard
undefined
8 snips
May 2, 2023 • 46min

116 - 10 Reasons Your Customers Don’t Make Time for Your Data Product Initiatives + A Big Update on the Data Product Leadership Community (DPLC)

Do you ever find it hard to get the requirements, problems, or needs out of your customers, stakeholders, or users when creating a data product? This week I’m coming to you solo to share reasons your stakeholders, users, or customers may not be making time for your discovery efforts. I’ve outlined 10 reasons, and delve into those in the first part of this episode.    In part two, I am going to share a big update about the Data Product Leadership Community (DPLC) I’m hoping to launch in June 2023. I have created a Google Doc outlining how v1 of the community will work as well as 6 specific benefits that I hope you’ll be able to achieve in the first year of participating. However, I need your feedback to know if this is shaping up into the community you want to join. As such, at the end of this episode, I’ll ask you to head over to the Google Doc and leave a comment. To get the document link, just add your email address to the DPLC announcement list at http://designingforanalytics.com/community and you’ll get a confirmation email back with the link.  Links Join the Data Product Leadership Community at designingforanalytics.com/thecommunity My definition of “data product” is outlined on Experiencing Data Episode 105  Product vs. Feature Teams by Marty Cagan Email Brian at brian@designingforanalytics.com.
undefined
Apr 18, 2023 • 45min

115 - Applying a Product and UX-Driven Approach to Building Stuart’s Data Platform with Osian Jones

Today I’m chatting with Osian Jones, Head of Product for the Data Platform at Stuart. Osian describes how impact and ROI can be difficult metrics to measure in a data platform, and how the team at Stuart has sought to answer this challenge. He also reveals how user experience is intrinsically linked to adoption and the technical problems that data platforms seek to solve. Throughout our conversation, Osian shares a holistic overview of what it was like to design a data platform from scratch, the lessons he’s learned along the way, and the advice he’d give to other data product managers taking on similar projects.  Highlights/ Skip to: Osian describes his role at Stuart (01:36) Brian and Osian explore the importance of creating an intentional user experience strategy (04:29) Osian explains how having a clear mission enables him to create parameters to measure product success (11:44) How Stuart developed the KPIs for their data platform (17:09) Osian gives his take on the pros and cons of how data departments are handled in regards to company oversight (21:23) Brian and Osian discuss how vital it is to listen to your end users rather than relying on analytics alone to measure adoption (26:50) Osian reveals how he and his team went about designing their platform (31:33) What Osian learned from building out the platform and what he would change if he had to tackle a data product like this all over again (36:34) Quotes from Today’s Episode “Analytics has been treated very much as a technical problem, and very much so on the data platform side, which is more on the infrastructure and the tooling to enable analytics to take place. And so, viewing that purely as a technical problem left us at odds in a way, compared to [teams that had] a product leader, where the user was the focus [and] the user experience was very much driving a lot of what was roadmap.” — Osian Jones (03:15) “Whenever we get this question of what’s the impact? What’s the value? How does it impact our company top line? How does it impact our company OKRs? This is when we start to panic sometimes, as data platform leaders because that’s an answer that’s really challenging for us, simply because we are mostly enablers for analytics teams who are themselves enablers. It’s almost like there’s two different degrees away from the direct impact that your team can have.” — Osian Jones (12:45) “We have to start with a very clear mission. And our mission is to empower everyone to make the best data-driven decisions as fast as possible. And so, hidden within there, that’s a function of reducing time to insight, it’s also about maximizing trust and obviously minimizing costs.” — Osian Jones (13:48) “We can track [metrics like reliability, incidents, time to resolution, etc.], but also there is a perception aspect to that as well. We can’t underestimate the importance of listening to our users and qualitative data.” — Osian Jones (30:16) “These were questions that I felt that I naturally had to ask myself as a product manager. … Understanding who our users are, what they are trying to do with data and what is the current state of our data platform—so those were the three main things that I really wanted to get to the heart of, and connecting those three things together.” – Osian Jones (35:29) “The advice that I would give to anyone who is taking on the role of a leader of a data platform or a similar role is, you can easily get overwhelmed by just so many different use cases. And so, I would really encourage [leaders] to avoid that.” – Osian Jones (37:57) “Really look at your data platform from an end-user perspective and almost think of it as if you were to put the data platform on a supermarket shelf, what would that look like? And so, for each of the different components, how would you market that in a single one-liner in terms of what can this do for me?” – Osian Jones (39:22) Links Stuart: https://stuart.com/ Article on IIA: https://iianalytics.com/community/blog/how-to-build-a-data-platform-as-a-product-a-retrospective Experiencing Data Episode 80 with Doug Hubbard: https://designingforanalytics.com/resources/episodes/080-how-to-measure-the-impact-of-data-productsand-anything-else-with-forecasting-and-measurement-expert-doug-hubbard/ LinkedIn: https://www.linkedin.com/in/osianllwydjones/ Medium: https://medium.com/@osianllwyd

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode