Deep Papers

Arize AI
undefined
Jun 14, 2024 • 44min

LLM Interpretability and Sparse Autoencoders: Research from OpenAI and Anthropic

Delve into recent research on LLM interpretability with k-sparse autoencoders from OpenAI and sparse autoencoder scaling laws from Anthropic. Explore the implications for understanding neural activity and extracting interpretable features from language models.
undefined
May 30, 2024 • 48min

Trustworthy LLMs: A Survey and Guideline for Evaluating Large Language Models' Alignment

We break down the paper--Trustworthy LLMs: A Survey and Guideline for Evaluating Large Language Models' Alignment.Ensuring alignment (aka: making models behave in accordance with human intentions) has become a critical task before deploying LLMs in real-world applications. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness.The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.Read more about Trustworthy LLMs: A Survey and Guideline for Evaluating Large Language Models' AlignmentLearn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
undefined
May 13, 2024 • 45min

Breaking Down EvalGen: Who Validates the Validators?

This podcast delves into the complexities of using Large Language Models for evaluation, highlighting the need for human validation in aligning LLM-generated evaluators with user preferences. Topics include developing criteria for acceptable LLM outputs, evaluating email responses, evolving evaluation criteria, template management, LLM validation, and the iterative process of building effective evaluation criteria.
undefined
Apr 26, 2024 • 45min

Keys To Understanding ReAct: Synergizing Reasoning and Acting in Language Models

Exploring the ReAct approach in language models, combining reasoning and actionable outputs. Discussion on challenges of interpretability in LM and the importance of self-reflection. Comparing reasoning-only and action-only methods in QA tasks. Reducing hallucinations through model fine-tuning. Implementing chatbox class with OpenAI and enhancing models with self-reflection and decision-making strategies.
undefined
Apr 4, 2024 • 45min

Demystifying Chronos: Learning the Language of Time Series

This week, we’ve covering Amazon’s time series model: Chronos. Developing accurate machine-learning-based forecasting models has traditionally required substantial dataset-specific tuning and model customization. Chronos however, is built on a language model architecture and trained with billions of tokenized time series observations, enabling it to provide accurate zero-shot forecasts matching or exceeding purpose-built models.We dive into time series forecasting, some recent research our team has done, and take a community pulse on what people think of Chronos.  Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
undefined
Mar 25, 2024 • 43min

Anthropic Claude 3

The podcast delves into the latest buzz in AI with the arrival of Claude 3, challenging GPT-4. It explores new models in the LLM space like Haiku, Sonnet, and Opus, offering a balance of intelligence, speed, and cost. The discussion covers AI ethics, model transparency, prompting techniques, and advancements in text and code generation with creative visualizations. It also addresses improvements in AI models, language challenges, and the future of AI technology.
undefined
Mar 15, 2024 • 45min

Reinforcement Learning in the Era of LLMs

Exploring reinforcement learning in the era of LLMs, the podcast discusses the significance of RLHF techniques in improving LLM responses. Topics include LM alignment, online vs offline RL, credit assignment, prompting strategies, data embeddings, and mapping RL principles to language models.
undefined
Mar 1, 2024 • 45min

Sora: OpenAI’s Text-to-Video Generation Model

This week, we discuss the implications of Text-to-Video Generation and speculate as to the possibilities (and limitations) of this incredible technology with some hot takes. Dat Ngo, ML Solutions Engineer at Arize, is joined by community member and AI Engineer Vibhu Sapra to review OpenAI’s technical report on their Text-To-Video Generation Model: Sora.According to OpenAI, “Sora can generate videos up to a minute long while maintaining visual quality and adherence to the user’s prompt.” At the time of this recording, the model had not been widely released yet, but was becoming available to red teamers to assess risk, and also to artists to receive feedback on how Sora could be helpful for creatives.At the end of our discussion, we also explore EvalCrafter: Benchmarking and Evaluating Large Video Generation Models. This recent paper proposed a new framework and pipeline to exhaustively evaluate the performance of the generated videos, which we look at in light of Sora.Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
undefined
Feb 8, 2024 • 40min

RAG vs Fine-Tuning

This podcast explores the tradeoffs between RAG and fine-tuning for LLMs. It discusses implementing RAG in production, question and answer generation using JSON and LOM models, using GPT for test question generation in agriculture, evaluating relevance in email retrieval, and the use of RAG and fine-tuning for QA pair generation.
undefined
Feb 2, 2024 • 36min

HyDE: Precise Zero-Shot Dense Retrieval without Relevance Labels

We discuss HyDE: a thrilling zero-shot learning technique that combines GPT-3’s language understanding with contrastive text encoders. HyDE revolutionizes information retrieval and grounding in real-world data by generating hypothetical documents from queries and retrieving similar real-world documents. It outperforms traditional unsupervised retrievers, rivaling fine-tuned retrievers across diverse tasks and languages. This leap in zero-shot learning efficiently retrieves relevant real-world information without task-specific fine-tuning, broadening AI model applicability and effectiveness. Link to transcript and live recording: https://arize.com/blog/hyde-paper-reading-and-discussion/Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app