The AI in Business Podcast cover image

The AI in Business Podcast

Latest episodes

undefined
Feb 26, 2017 • 29min

How Data Lakes Support ML in Industry - with Cloudera's Amr Awadallah

If you're going to apply machine learning (ML) in a business context, you need a lot of data, and algorithms across the board perform better with more recent, rich, and relevant data. Today, there are companies whose entire business models are predicated on helping others make sense of and use of this type of information. In this episode, we speak with the CTO and Co-Founder of one such company—Palo Alto-based Cloudera. CTO Amr Awadallah, PhD, speaks with us this week about where he sees "data lakes" (or "data hubs", Cloudera's preferred term) and warehouses play an important role in ML applications in business. Based on his experiences helping a variety of companies in many countries set up data lakes, Amwadallah is able to distill and communicate these uses in three broad categories that apply across industries as companies look to solve tougher problems and ask more complex questions using unstructured data.
undefined
Feb 19, 2017 • 31min

Machine Learning for Media Monitoring - with Signal Chief Data Scientist

One facet of business that nearly any industry has in common is the need to stay on top of news in their respective market, including competitor strategies or understanding changes in news related to the field. Media monitoring is a domain that machine learning (ML) is well suited for, with it's ability to coax out headlines, contextual information, and financial data from the seemingly endless stream of social, blog, and other information on the web today. Signal is a company that uses ML specifically for these purposes. In this episode, we speak with Signal Media's Chief Data Scientist and Co-founder Dr. Miguel Martinez, who dives into real business use cases illustrating the use of machine learning for media monitoring across industries.  
undefined
Feb 12, 2017 • 25min

Tuning Machine Learning Algorithms with Scott Clark

What does it mean to tune an algorithm, how does it matter in a business context, and what are the approaches being developed today when it comes to tuning algorithms? This week's guest helps us answer these questions and more. CEO and Co-Founder Scott Clark of SigOpt takes time to explain the dynamics of tuning, goes into some of the cutting-edge methods for getting tuning done, and shares advice on how businesses using machine learning algorithms can continue to refine and adjust their parameters in order to glean greater results.
undefined
Feb 5, 2017 • 31min

How to Raise Money for Your AI Startup – with Ben Narasin of Canvas Ventures

In this episode, recorded live at Canvas Ventures in Portola Valley, I speak with Ben Narasin, a partner with Canvas and an avid venture investor in AI and ML companies, some of which we've interviewed (Crowdflower and Mulesoft), along with many others that we haven't (like Siri). Ben doesn't look for AI to invest in; instead, he looks for companies to invest in, a subtle but important difference in a business world increasingly caught up in the explosion of AI and ML technologies. From investments in Nuance to more recent one such as Houzz, Narasin has solid ideas as to what makes an investment interesting when AI is involved, what might actually add value to a model with AI, and what's wholly irrelevant when it comes to overall business model. Besides making important distinctions on where investments can make a return and how to raise money for your AI startup, this interview is also chock full of great analogies (give me golden dragons all day long—anyone?)
undefined
Jan 29, 2017 • 24min

How to Learn Machine Learning – an Investor's Perspective

There’s been lot of hype around AI and ML in business over the past five years. Even among investors exist a lot of misconceptions about using ML in a business context, and how to get up to speed on and grasp and understand leveraging related technologies in industry. Recently, I talked with Benjamin Levy of BootstrapLabs in San Francisco, who I met through an investment banking friend in Boston. BootstrapLabs invests in Bay area companies, and Levy also travels around the world speaking about investing in AI companies and raising funds for new ventures. In this episode, Levy gives his perspective on what investors and executives get wrong about ML and and AI, and discusses how they can get up to speed on the applications for these technologies and leverage them and related expertise to really make a difference (i.e. increased ROI) in their businesses.
undefined
Jan 22, 2017 • 23min

Machine Learning in Infosecurity

Uday Veeramachaneni is taking a new approach to machine learning in infosecurity, AKA infosec. Traditionally, infosec has approached predicting attacks in two ways: through a system of hand-designed rules, and through anomaly detection, a technique that detects statistical outliers in the data. The problem with these approaches, Veermachaneni says, is that the signal-to-noise ratio is too low. In this episode, Veermachaneni discusses how his company, PatternEx, is using machine learning to provide more accurate attack prediction. He also discusses the cooperative role of man and machine in building robust AI applications in data security and walks us through a common security attack scenario.
undefined
Jan 15, 2017 • 23min

How to Hire Machine Learning Talent - with HIRED's Parshu Kulkarni

When it comes to finding an expert on interviewing and finding machine learning (ML) talent, Parshu Kulkarni may just be the guy to ask. Not only is Kulkarni one of a small subsegment of the global population with an advanced degree in data science who has also been hired to work in tech companies like eBay, but he's been on the unique side hiring of ML and AI talent. Today, Kulkarni works full-time as Head of Data Science at Hired, Inc., a giant platform for hiring top talent in tech and other areas. In this episode, he provide an interesting distinction between what individuals with experience in data science look for in potential hires versus those who do not have the tech background tend to look for, and also dives into the supply-and-demand landscape for data scientists now and in the future—an interesting interview for anyone looking to hire or be hired in the ML and AI space.
undefined
Jan 8, 2017 • 26min

How Algorithms Improve Advertising - AI for Marketing Optimization

In marketing, there are lots of applications in AI and machine learning (ML), from recommendation engines to predictive analytics and beyond. At the company Adgorithms, there are even more ambitious projects underway - like automating the process of marketing altogether by having a machine run and generate ads, or test and spend the marketing budget of a company. Or Shani, CEO of Adgorithms, focuses on the quantitative aspects and optimization of online advertising, using algorithms to improve advertising processes. In this interview, Shani talks about how Adgorithms' smart marketing platform "Albert" meshes with humans’ role in marketing, and also discusses how these roles might change over the next 5 to 10 years as we move towards ever more automated marketing processes.
undefined
Jan 1, 2017 • 26min

Automating White Collar Work - Two Examples and a Look Forward

Not all knowledge work can be crunched by a program, but there are some hard-to-automate business processes that a select few entities are making an attempt to automate now. Boston-based Rage Frameworks, Inc. is one such company, and in this episode we speak with Senior Vice President (SVP) Joy Dasgupta about specific applications of automation technologies applied to white collar environments. Rage Frameworks has developed intelligent machines that have been able to take over process that, prior to the emergence of AI and automation technologies, would have required thousands of people to accomplish. These developments are a microcosm of what is to come, and the process is not without its ethical considerations (as discussed in a previous interview with Yoshua Bengio). But Dasgupta's insights provide a concrete glimpse into how these processes are being automated in the knowledge workplace today and what that might mean or look like decades from now.
undefined
Dec 25, 2016 • 29min

When and How Will Autonomous Cars be Mainstream?

This week we speak with CEO and Founder of Nexar Inc., Eran Shir, whose company has created a dashboard app that allows drivers to mount a smartphone, which then collects visual information and other data, such as speed from your accelerometer, in order to help detect and prevent accidents. The app also serves as a way to reconstruct what happens in a collision - a unique solution in a big and untapped market. In this episode, Shir gives his vision of a world where the roads are filled with cyborgs, rather than autonomous robots, i.e. people augmented with new sensory information that trigger notifications, warnings or prompts for safer driving behavior, amongst a network of cloud-connected cars.  He also touches on what the transition might look like in response to the question - when will autonomous cars be mainstream?

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode