The AI in Business Podcast cover image

The AI in Business Podcast

Latest episodes

undefined
Dec 22, 2016 • 26min

How to Leverage Data Assets for Business - with Kenneth Cukier

In this episode, we speak with Senior Editor for the Economist in digital and data products and Co-author of "Big Data: A Revolution that Will Transform How We Work, Live and Think", Kenneth Cukier, who speaks on the technologies that underlie big data and make it what it is today. Cukier addresses common misconceptions about machine learning and dives into how companies can catch up with this technology by thinking through, assessing ROI, and making sense of the dynamics of big data. Listen for Cukier's apt analogy in comparing machine learning technology to the dynamics of computing from decades ago.
undefined
Dec 19, 2016 • 24min

How Executives Can Learn Machine Learning

What are executives missing the boat on and what do they need to think about when it comes to AI and ML? This week, we speak with John Straw, who has had a number of businesses in the UK and US, currently a senior advisor to McKinsey & Co., and who works with a lot of executive teams in terms of finding new applications for AI and finding ROI for those technologies in industry. We speak this week about how executives can get up to speed, what degree of knowledge and in what way they should learn it so they can find opportunities in their own companies. Straw also touches on what he sees as the biggest areas of oversight, in terms of preventing companies from finding those applications that can keep them up to speed with competitors and the big technology players.
undefined
Dec 15, 2016 • 25min

Artificial Intelligence in Stock Trading - Future Trends and Applications

In many ways, AI and finance are made for each other. Machine learning and other techniques make it easier to identify patterns that might otherwise not be detected by the human eye, and finance is quantitative to begin with so that it’s hard not to find traction. Financial firms have also invested heavily in AI in the past, and more are starting to tap into the financial applications of machine learning (ML) and deep learning. This week, we’re joined by CEO and Co-founder of Kavout Alex Lu, whose company offers AI trading applications for enterprises and individuals. Lu speaks today about the kinds of patterns that traders now have access to in finance, and he gives examples of ways Kavout and other institutions are using artificial intelligence in stock trading to build better and more personalized products and services.  
undefined
Dec 10, 2016 • 26min

Three Scenarios for the Future of Work in an AI Economy

Market research and trends is important when discussing AI and business, but it's also worthwhile to contemplate the ethical and social implications further down the line. How will countries deal with potential unemployment problems? How might countries collaborate to hedge against the risks that AI poses to the future of work and other economic facets? A relatively small group is helping people do just that i.e. getting organizations and countries to think through how they could hedge against the grander risks inherent in a world powered by AI. In this episode, we speak with Jerome Glenn, head of the Millennium Project, an initiative that focuses on research implementing the organizational means, operational priorities, and financing structures necessary to achieve the Millennium Development Goals or (MDGs). Glenn talks about how he gets principalities of the world to bring their big industrial players and the public to talk through possible scenarios that are 30, 40, even 50 years in the future, and about ways we might potentially hedge against risks and make the most of the upsides of AI in a global economy.
undefined
Dec 8, 2016 • 20min

The Future of Advertising Attribution with Machine Learning

A medium-size business with a $20M marketing budget can run into issues when aiming to track an attribute, what marketing dollars brought in customers, etc. But when you're managing $90B for customers all over the world and working in every conceivable channel, things get all the more complicated. Josh Sutton, global head of Data and AI at Publicis.Sapient, speaks in this episode about the future of advertising attribution with machine learning. Specifically, Sutton discusses how his team of publicists is working on managing, tracking, and determining cohorts and attribution across more channels and numerous clients, and touches on ways that the company is applying ML to make sense of marketing data and spend marketing dollars more effectively.
undefined
Dec 4, 2016 • 21min

Five Year Trends in Medical AI Applications

I remember reading an article in Scientific American years ago about a poster of a person looking in the direction people sitting in a school dining room, and that this poster would make people sitting in the dining room less likely to litter. This seems like an absurd example of holding people accountable for their actions, but as it turns out, there are a lot more serious consequences to ensuring behavior change through observation, and one area where this matters is medicine. Today, there’s a major issue with people who don't adhere to their medical regimens, only to relapse or experience more serious symptoms later on. This week's guest, Cory Kidd, CEO of Catalia Health and known for his work at MIT on human-robotic interaction, is working to help solve this problem by developing a robot that adds some of that physical presence and accountability. This is likely one of many novel medical AI applications that we're likely to see roll out in healthcare over the next decade.
undefined
Dec 1, 2016 • 21min

Cogitai's Mark Ring - Going Beyond Reinforcement Learning

Today's episode is about continual learning, a focus of Cogitai, a company dedicated to building AI's that interact and learn from the real world. Cogitai's Cofound and CEO Mark Ring talks about the differences between supervised and reinforcement, and how Cogitai intends to take reinforcement learning in the direction of continual learning. Ring also touches on where he sees an opportunity for applying continual learning in domains like vehicles, consumer apps, etc., and improving abstract levels of understanding by machines.  
undefined
Nov 27, 2016 • 23min

Applying Computational Linguistics to Streamline the Legal Landscape

There’s not that many serial tech entrepreneurs in the legal space, but Gary Sangha is one of them. Sangha is CEO and founder of Lit IQ, which is applying machine learning and computational linguistics to legal documents to help lawyers avoid making drafting mistakes. In this episode, Sangha talks about where this type of software is most useful and legitimate, what the legal landscape in relationship to machine learning may look like in the next few years, and how this technology may apply across industries.
undefined
Nov 24, 2016 • 21min

OpenAI's Ilya Sutskever on Preparing for the Future of Intelligence

Some organizations are leveraging artificial intelligence (AI) to help the world with research, some to help companies with marketing, and some are intent on ensuring that the future of AI doesn’t result in the end of humanity. Theres’a good likelihood that if you're reading this interview, that you're already familiar with OpenAI, an organization with the sole purpose of ensuring that the future of man and machines is a friendly one, and that the concentration of power and intelligence isn’t centralized in a way that would make AI a dangerous tool. In this episode, we speak with Ilya Sutskever, research director for Open AI. This was a fun but frustrating interview; Sutskever held his cards close to his chest, but we gain some perspective on what he considers to be areas of importance regarding the future of AI and considerations for safely furthering advances in the field.
undefined
Nov 20, 2016 • 22min

Future Applications of Machine Vision - an Interview with Cortica's CEO

Right now, you can take a picture of a flower in your garden and post it on social media to see if anyone knows its proper name. Wouldn’t it be nice, though, if a machine could identify the correct name and species in the picture you just took? Solving this problem in applications of machine vision is something that CEO Igal Raichelgauz and his team are working on at Cortica, a machine learning company that is not focused on deep learning, but is instead taking a more "shallow" approach. In this episode, Raichelgauz articulates Cortica's approach, which is based on neurology and goes against some of the current approaches in getting machines to learn. We discuss some of these primary differences and dive into Cortica's goals for applying machine vision in consumer products.

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode