Ground Truths cover image

Ground Truths

Latest episodes

undefined
May 20, 2024 • 53min

Svetlana Blitshteyn: On the Front Line With Long Covid and POTS

After finishing her training in neurology at Mayo Clinic, Dr. Svetlana Blitshteyn started a Dysautonomia Clinic in 2009. Little did she know what was in store many years later when Covid hit!Ground Truths podcasts are on Apple and Spotify. The video interviews are on YouTubeTranscript with audio and external linksEric Topol (00:07):Well, hello, it's Eric Topol from Ground Truths, and I have with me a really great authority on dysautonomia and POTS. We will get into what that is for those who aren't following this closely. And it's Svetlana Blitshteyn who is a faculty member at University of Buffalo and a neurologist who long before there was such a thing as Covid was already onto one of the most important pathways of the body, the autonomic nervous system and how it can go off track. So welcome, Svetlana.Svetlana Blitshteyn (00:40):Thank you so much, Eric for having me. And I want to say it's a great honor for me to be here and just to be on the list with your other guests. It's remarkable and I'm very grateful and congratulations on being on the TIME100 Health list for influential people in 2024. And I am grateful for everything that you've done. As I mentioned earlier, I'm a big fan of your work before the pandemic and of course with Covid I followed your podcast and posts because you became the best science communicator and I'm very happy to see you being a strong advocate and thank you for everything you've done.Eric Topol (01:27):Well, that's so kind to you. And I think talking about getting things going before the pandemic, back in 2011, you published a book with Jodi Epstein Rhum called POTS - Together We Stand: Riding the Waves of Dysautonomia. And you probably didn't have an idea that there would be an epidemic of that more than a decade later, I guess, right?Svetlana Blitshteyn (01:54):Yeah, absolutely. Of course, SARS-CoV-2 is a new virus and we can technically say that Long Covid and post Covid complications could be viewed as a new entity. But practically speaking, we know that post-infectious syndromes have been happening for many decades. And so, the most common trigger for POTS happened to be infection, whether it was influenza or mononucleosis or Lyme or enterovirus. We knew this was happening. So I think it didn't take long for me and my colleagues to realize that we're going to be seeing a lot of patients with autonomic dysfunction after Covid.On the Front LineEric Topol (02:40):Well, one of the things that's important for having you on is you're in the front lines taking care of lots of patients with Long Covid and this postural orthostatic tachycardia syndrome (POTS). And I wonder if you could tell us what it's care for these patients because so many of them are incapacitated. As a cardiologist, I see of course some because of the cardiovascular aspects, but you are dealing with this on a day-to-day basis.Svetlana Blitshteyn (03:14):Yeah, absolutely. As early as April 2020 when everything was closed, I got a call from a young doctor in New York City saying that he had Covid and he couldn't recover, he couldn't return to the hospital. And his colleagues and cardiology attendants also had the same symptoms and the symptoms were palpitations, orthostatic intolerance, tachycardia, fatigue. Now, how he knew to contact me is that his sister was my patient with POTS before Covid pandemic. So he kind of figured this looked like my sister, let me check this out. And it didn't take long for me to have a lot of patience from the early wave. And then fairly soon, I think within months I was thinking, we have to write this up because this is important. And to some of us it was not news, but I was sure that to many physicians and public health officials, this would be something new.Svetlana Blitshteyn (04:18):So because I'm a busy clinician and don't have a lot of time for publications, I had to recruit a graduate student from McMasters and together we had this paper out, which was the first and largest case series on post Covid POTS and other autonomic disorders. And interestingly, even though it came out I think in 2021, by the time it was published, it became the most citable paper for me. And so I think from then on organizations and societies became interested in the work that I do because prior to that, I must say in the kind of a niche specialty was I don't think it was very popular or of interest to me.How Did You Get Interested in Dysautonomia?Eric Topol (05:06):Yeah, so that's why I wanted to just take a step back with you Svetlana, because you had the foresight to be the founder and director of the Dysautonomia Clinic when a lot of people weren't in touch with this as an important entity. What prompted you as a neurologist to really zoom in on dysautonomia when you started this clinic?Svetlana Blitshteyn (05:28):Sure. So the reasons are how I ended up in this field is kind of a convoluted road and the reasons are many, but one, I will say that I trained at Mayo Clinic where we received very good training on autonomic disorders and EMG and coming back to returning back to Buffalo, I began working at the large multiple sclerosis clinic because Western New York has a high incidence MS. And so, what they quickly realized in that clinic is that there was a subset of women who did not qualify for the diagnostic criteria of multiple sclerosis, yet they had a lot of the same symptoms and they were certainly very disabled. Now I recognize that these women had autonomic disorders of all sorts and small fiber neuropathy, and I think this population sort of grew and eventually I realized there is no one not only in Buffalo but the entire Western New York who is doing this work.Svetlana Blitshteyn (06:34):So I kind of fell into that. But another reason is actually more personal that I haven’t talked about. So years ago I was traveling to Toronto, Canada for a neurology meeting to present my big study on meningioma and hormone replacement therapy using Mayo Clinic database. And so, in that year, the study received top 10 noteworthy studies of the year award from the Society of Neuro-Oncology, and it was profiled in Reuters Health. Now, on the way back from the conference, I had the flu, and when they returned I could no longer walk the same hallways of the hospital where I walked previously. And no matter how hard I try to push my body, we all do this in medicine, we push through, I just couldn’t do it. No amount of wishing or positive thinking. And so, I think that’s how I came to know personally the post-infectious syndromes. And I think it almost became a duality of experiencing this and also practicing it.Eric Topol (07:52):No, that’s really striking and it wasn’t so common to hear about this post flu, but certainly it changed in 2020. So how does a person with POTS typically present to you?Clinical PresentationSvetlana Blitshteyn (08:08):So these are very important questions because what I want to stress is though POTS is one of the most common autonomic disorders. Even if you don’t have POTS by the diagnostic criteria, you may still have autonomic dysfunction and significant autonomic symptoms. How do they present? Well, they present like most Long Covid patients, the most common symptoms are orthostatic intolerance, fatigue, exercise intolerance, post exertional malaise, dizziness, tachycardia, brain fog. And these are common themes across the board in Long Covid patients, but also in pre-Covid post-acute infection syndrome patients. And you have to recognize because I think what I tell my colleagues is that oftentimes patients are not going to present to you saying, I have orthostatic intolerance. Many times they will say, I’m very tired. I can no longer go to the gym or when I go to the store, I have to be out of there in 15 minutes because the orthostatic intolerance symptoms come up.Svetlana Blitshteyn (09:22):So sometimes the patients themselves don’t recognize that and it’s up to us physicians to ask the right questions to get the information down. History is very important, knowing the pattern. And then of course, as I always say in all of my papers and lectures, you have to do a 10-minute stand test by measuring supine and standing blood pressure and heart rate on every Long Covid patients. And that’s how you spot those that have excessive postural tachycardia or their blood pressure dropping or so forth. So we have the tools. We don’t need fancy autonomic labs. We don’t even need a tilt table test. The diagnostic criteria for POTS is that you need to have either a 10-minute stand test or a tilt table test to get the diagnosis for POTS, orthostatic hypotension or even neurocardiogenic syncope. Now I think it's important to stress that even if a patient doesn't qualify, and let's say many patients with Long Covid will not elevate their heart rate by at least 30 beats per minute, it could be 20, it could be 25. These criteria are of course essential when we do research studies. But I think practically speaking, in patient care where everything is gray and nothing is black or white, especially in autonomic disorders, you really have to make a diagnosis saying, this sounds like autonomic dysfunction. Let me treat the patient for this problem.Eric Topol (11:07):Well, you brought up something that’s really important because doctors don’t have much time and they’re inpatient. They don’t wait 10 minutes to do a test to check your blood pressure. They send the patients for a tilt table, which nobody likes to have that test done, and it’s unnecessary added appointment and expense and whatnot. So that’s a good tip right there that you can get the same information just by checking the blood pressure and heart rate on standing for an extended period of time, which 10 minutes is a long time in the clinic of course. Now, what is the mechanism, what do you think is going on with the SARS-CoV-2 virus and its predilection to affect the autonomic nervous system? As you know, so many studies have questioned whether you even actually infect neurons or alternatively, which is more likely this an inflammation of the neural tissue. But what do you think is going on here?UnderpinningsSvetlana Blitshteyn (12:10):Right, so I think it’s important to say we don’t have exact pathophysiology of what exactly is going on. I think we can only extrapolate that what’s going on in Long Covid is possibly what’s going on in any post infectious onset dysautonomia. And so there are many hypothesis and there are many suggestions, and we share this disorder with cardiologist and immunologist and rheumatologist. The way I view this is what I described in my paper from a few years ago is that this is likely a central nervous system disorder with multisystemic involvement and it involves the cardiovascular system, immunologic, metabolic, possibly prothrombotic. The pathophysiology of all POTS closely parallels to pathophysiology of Long Covid. Now we don’t know if it’s the same thing and certainly I see that there may be more complications in Long Covid patients in the realm of cardiovascular manifestations in the realm of blood clots and things like that.Svetlana Blitshteyn (13:21):So we can’t say it’s the same, but it very closely resembles and I think at the core is going to be inflammation, autoimmunity and immunologic dysfunction. Now there are also other things that are very important and that would be mitochondrial dysfunction, that would be hypercoagulable state, it would be endothelial dysfunction. And I think the silver lining of Long Covid and having so many people invested in research and so many funds is that by uncovering what Long Covid is, we’re now going to be uncovering what POTS and other autonomic disorders are. And I think we also need to mention a couple of other things. One is small fiber neuropathy, small fiber neuropathy and POTS are very much comorbid conditions. And similarly, small fiber neuropathy frequently occurs in patients with Long Covid, so that’s a substrate with the damaged small nerve fibers that they're everywhere in our bodies and also innervate the organs as well.Svetlana Blitshteyn (14:34):The second big thing is that needs to be mentioned is hyperactive mast cells. So mast cells, small nerve fibers and capillaries are very much located in proximity. And what I have usually is a slide from an old paper in oral biology that gives you a specimen where you see a capillary vessel, a stain small nerve fiber, and in between them there is a mass cell with tryptase in it stained in black. And so there is a close communication between small nerve fibers between endothelial wall and between mast cells, and that’s what we commonly see as a triad. We see this as a triad in Long Covid patients. We see that as a triad in patients with joint hypermobility syndrome and hypermobile EDS, and you also see this in many of the autoimmune disorders where people develop new allergies and new sensitivities concurrent or preceding the onset of autoimmune disease.Small Fiber NeuropathyEric Topol (15:49):Yeah, no, it’s fascinating. And I know you’ve worked with this in Ehlers-Danlos syndrome (EDS) as you mentioned, the hypermobility, but just to go back on this, when you want to entertain the involvement of small fiber neuropathy, is that diagnosable? I mean it’s obvious that you can get the tachycardia, the change in position blood pressure, but do you have to do other tests to say there is indeed a small fiber neuropathy or is that a clinical diagnosis?Svetlana Blitshteyn (16:20):Absolutely. We have the testing and the testing is skin biopsy. That is simply a punch biopsy that you can do in your clinic and it takes about 15 minutes. You have the free kit that the company of, there are many companies, I don’t want to name specific ones, but there are several companies that do this kind of work. You send the biopsy back to them, they look under the microscope, they stain it. You can also stain it with amyloid stain to rule out amyloidosis, which we do in neurology, and I think that’s quite accessible to many clinicians everywhere. Now we also have another test called QSART (quantitative sudomotor axon reflex test), and that’s a test part of autonomic lab. Mayo Clinic has it, Cleveland Clinic has it, other big labs have it, and it’s hard to get there because the wait time is big.Svetlana Blitshteyn (17:15):Patients need to travel. Insurance doesn’t always authorize, so access is a big problem, but more accessible is the skin biopsy. And so, by doing skin biopsy and then correlating with neurologic exam findings, which oftentimes involved reduce pain and temperature sensation in the feet, sometimes in the hands you can conclude that the patient has small fiber neuropathy and that's a very tangible and objective diagnosis. There again, with everything related to diagnostics, some neuropathy is very patchy and the patchy neuropathy is the one that may not be in your feet where you do the skin biopsy. It may be in the torso, it may be in the face, and we don't have biopsy there. So you can totally miss it. The results can come back as normal, but you can have patchy type of small fiber neuropathy and there are also diagnostic tests that might be not sensitive to pick up issues. So I think in everything Long Covid, it highlights the fact that many tests that we use in medicine are outdated perhaps and not targeted towards these patients with Long Covid. Therefore we say, well, we did the workup, everything looks good. MRI looks good, cardiac echo looks great, and yet the patient is very sick with all kinds of Long Covid complications.Pure Post-Viral POTS?Eric Topol (18:55):Right. Now, before we get into the treatments, I want to just segment this a bit. Can you get pure POTS that is no Long Covid just POTS, or as you implied that usually there's some coalescence of symptoms with the usual Long Covid symptoms and POTS added to that?Svetlana Blitshteyn (19:21):So the studies have shown for us that about 40% of patients with POTS have post-infectious onset, which means more than a half doesn’t. And so of course you can have POTS from other causes and the most common is puberty, hormonal change, the most common age of onset is about 13, 14 years old and 80% of women of childbearing age and other triggers or pregnancy, hormonal change again, surgery, trauma like concussion, post-concussion, autonomic dysfunction is quite common.Eric Topol (20:05):So these are pure POTS without the other symptoms. Is that what you're saying in these examples?Svetlana Blitshteyn (20:12):Well, it's a very good question. It depends what you mean by pure POTS, and I have seen especially cardiologists cling to this notion that there is pure POTS and then there is POTS plus. Now I think majority of people don't have pure POTS and by pure POTS I think you mean those who have postural tachycardia and nothing else. And so most patients, I think 80% have a number of symptoms. So in my clinic I almost never see someone who is otherwise well and all they have is postural tachycardia and then they're having a great time. Some patients do exist like that, they tend to be athletic, they can still function in their life, but majority of patients come to us with symptoms like dizziness, like fatigue, like exercise intolerance, decline in functioning. So I think there is this notion that while there is pure POTS, let me just fix the postural tachycardia and the patient will be great and we all want that. Certainly sometimes I get lucky and when I give the patient a beta blocker or ivabradine or a calcium channel blocker, sometimes we use it, certainly they get better, but most patients don't have that because the disability that drives POTS isn't actually postural tachycardia, it's all that other stuff and a lot of it's neurologic, which is why I put this as a central nervous system disorder.TreatmentsEric Topol (21:58):Yeah, that's so important. Now you mentioned the treatments. These are drug treatments, largely beta blockers, and can you tell us what's the success rate with the various treatments that you use in your clinic?Svetlana Blitshteyn (22:13):So the first thing we'll have to mention is that there are no FDA approved therapies for POTS, just like there are no FDA approved therapies for Long Covid. And so, everything we use is off label. Now, oftentimes people think that because it wasn't evidence-based and there are no big trials. We do have trials, we do have trials for beta blockers and we know they work. We have trials for Midodrine and we know that's working. We also have fludrocortisone, which is a medication that improves sodium and water resorption. So we know that there are certain things we've used for decades that have been working, and I think that's what I was trying to convey in this paper of post Covid autonomic dysfunction assessment and treatment is that when you see these patients, and you can be of any specialty, you can be in primary care, you can be a physiatrist, a cardiologist, there are things to do, there are medications to use.Svetlana Blitshteyn (23:20):Oftentimes colleagues would say, well, you diagnose them and then what do you treat them with? And then I can refer them to table six in that paper and say, look at this list. You have a lot of options to try. We have the first line treatment options, which are your beta blockers and Midodrine and Florinef and Mestinon. And then we have the second line therapies you can choose from the stimulants are there Provigil, Nuvigil, Wellbutrin, Droxidopa is FDA approved for neurogenic orthostatic hypotension. Now we don't use it commonly, but it can still be tried in people whose blood pressures are falling on your exam. So we have a number of medications to choose from in addition to non-pharmacologic therapies.Eric Topol (24:14):Right now, I'm going to get to the non-pharmacologic in a moment, but the beta blocker, which is kind of the first one to give, it's a little bit paradoxical. It makes people tired, and these people already are, don't have much energy. Is the success rate of beta blocker good enough that that should be the first thing to try?Svetlana Blitshteyn (24:35):Absolutely. The first line medication treatment options are beta blockers. Why? Okay, why are they working? They're not only working to reduce heart rate, but they may also decrease sympathetic overactivity, which is the driving mechanism of autonomic dysfunction. And when you reduce that overactivity, even your energy level can improve. Now, the key here is to use a low dose. A lot of the time I see this mistake being done where the doctor is just prescribing 25 milligrams of metoprolol twice a day. Well, this is too high. And so, the key is to use very low doses and to use them and then increase them as needed. We have a bunch of beta blockers to choose from. We have the non-selective propranolol that you can use when someone maybe has a migraine headache or significant anxiety, they penetrate the brain, and we have non-selected beta blockers like atenolol, metoprolol and others that you can use at half a tablet. Sometimes I start my patients at quarter of tablet and then go from there. So low doses will block tachycardia, decrease sympathetic overactivity, and in many cases will allow the patient to remain upright for longer periods of time.Eric Topol (26:09):That's really helpful. Now, one of the other things, I believe it's approved in Canada, not in the US, is a vagal neuromodulation device. And I wonder, it seems like it would be nice to avoid drugs if there was a device that worked really well. Is there anything that is in the hopper for that?Svetlana Blitshteyn (26:32):Yeah, absolutely. Non-invasive vagus nerve stimulator is in clinical trials for POTS and other autonomic disorders, but we have it FDA for treatment of migraine and cluster headaches, so it's already approved here and it can also be helpful for chronic pain and gastroparesis. So there are studies on mice that show that with the application of noninvasive vagus nerve stimulator, there is reduction of pro-inflammatory cytokines. So here is this very important connection that comes from Kevin Tracey's work that showed inflammatory reflex, and that's a reflex between the vagus nerve and the immune system. So when we talk about sympathetic overactivity, we need to also think about that. That's a mechanism for pro-inflammatory state and possibly prothrombotic state. So anything that decreases sympathetic overactivity and enhancing parasympathetic tone is going to be good for you.Eric Topol (27:51):Now, let's go over to, I mean, I'm going to get into this body brain axis in a moment because there's another part of the story here that's becoming more interesting, fascinating, in fact every day. But before I do that, you mentioned the small fiber neuropathy. Is there a specific treatment for that or is that just something that is just an added dimension of the problem without a specific treatment available?Svetlana Blitshteyn (28:21):Yeah, we certainly have treatment for small fiber neuropathy. We have symptomatic treatment for neuropathic pain, and these medications are gabapentin, pregabalin, amitriptyline and low dose naltrexone that have been gaining popularity. We used that before the pandemic. We used low dose naltrexone for people with chronic pain related to joint hypermobility. And so, we have symptomatic, we also have patches and creams and all kinds of topical applications for people with neuropathic pain. Then we also have, we try to go for the root cause, right? So the number one cause of small fiber neuropathy in the United States is diabetes. And certainly, you need to control hyperglycemia and in some patients you only need a pre-diabetic state, not even full diabetes to already have peripheral neuropathy. So you want to control blood glucose level first and foremost. Now then we have a big category of autoimmune and immune mediated causes, and that's where it gets very interesting because practical experience from many institutions and many neurologists worldwide have shown that when you give a subset of patients with autoimmune small fiber neuropathy, immunotherapy like IVIG, a lot of patients feel significantly better. And so, I think paralleling our field in dysautonomia and POTS, we are looking forward to immunotherapy being more mainstream rather than exception from the rule because access and insurance coverage is a huge barrier for clinicians and patients, but that may be a very effective treatment options for treatment refractory patients whose symptoms do not improve with symptomatic treatment.Eric Topol (30:38):Now, with all these treatments that are on the potential menu to try, and of course sometimes it really is a trial and error to get one that hopefully works for Covid, Long Covid, what is the natural history? Does this persist over years, or can it be completely resolved?Svetlana Blitshteyn (31:00):That’s a great question. Everyday Long Covid patients ask me, and I think what we are seeing is that there is a good subset of patients for whom Long Covid is going to be temporary and they will improve and even recover close to normal. Now remember that original case series of patients that I reported in early 2021 based on my 2020 experience in that 20 patient case series, very few recovered, three patients recovered back to normal. Most patients had lingering ongoing chronic symptoms. So of course mine is a kind of a referral bias where I get to see the sickest patients and it looks to be like it’s a problem of chronic illness variety. But I also think there is going to be a subset of patients and then we have to study them. We need to study who got better and who didn’t. And people improve significantly and some even recover close to normal. But I think certain symptoms like maybe fatigue and heat intolerance could persist because those are very heavily rooted in autonomic dysfunction.Vaccination and POTSEric Topol (32:26):Yeah, well, that’s something that’s sobering and why we need trials and to go after this in much more intensity and priority. Now the other issue here is while with Covid, this is almost always the virus infection, there have been reports of the vaccine inducing POTS and Long Covid, and so what does that tell us?Svetlana Blitshteyn (32:54):Well, that’s a big, big topic. Years ago, I was the first one to report a patient with POTS that was developed after HPV vaccine Gardasil. Now, at that time I was a young neurologist. Then the patient came to me saying she was an athlete saying two weeks after Gardasil vaccine, she developed these very disabling symptoms. And I thought it was very interesting and unique and I thought, well, I’ll just publish it. I never knew that this would be the start of a whole different discussion and debate on HPV vaccines. There were multiple reports from numerous countries, Denmark, Mexico, Japan. Japan actually suspended their mass HPV vaccination program. So somehow it became a big deal. Now many people, including my colleagues didn’t agree that POTS can begin POTS, small fiber neuropathy, other adverse neurologic events can begin after vaccination in general. And so, this was a topic that was widely debated and the European medical agencies came back saying, we don't have enough evidence.Svetlana Blitshteyn (34:20):Of course, we all want to have a good cancer vaccine. And it was amazing to watch this Covid vaccine issue unfolding where more than one study now have shown that indeed you can develop POTS after Covid vaccines and that the rate of POTS after Covid vaccines is actually slightly higher than before vaccination. So I think it was kind of interesting to see this unfold where I was now invited by Nature Journal to write an editorial on this very topic. So I think it's important to mention that sometimes POTS can begin after vaccination and however, I've always advised my patients to be vaccinated even now. Even now, I have patients who are unvaccinated and I say, I'm worried about you getting a second Covid or third without these vaccines, so please get vaccinated. Vaccines are very important public health measure, but we also have to acknowledge that sometimes people develop POTS, small fiber neuropathy and other complications after Covid vaccines.Prominence of the Vagus Nerve Eric Topol (35:44):Yeah, I think this is important to emphasize here because of all vaccinations can lead to neurologic sequelae. I mean look at Guillain-Barre, which is even more worrisome and that brings in the autoimmune component I think. And of course, the Covid vaccines and boosters have a liability in a small, very small percentage of people to do this. And that can't be discounted because it's a small risk and it's always this kind of risk benefit story when you're getting vaccinated that you are again spotlighting. Now gets us to the biggest thing of all besides the practical pearls you've been coming up with to help everyone in patients and clinicians. In recent weeks, there's been explosion of these intra body circuits. There was a paper from Columbia last week that taught us about the body-brain circuits between the vagus nerve and the caudal Nucleus of the Solitary Tract (cNST) of the brain and how this is basically a master switch for the immune system. And so, the vagus nerve there and then you have this gut to brain story, which is the whole gut microbiome is talking to the brain through the vagus nerve. I mean, everything comes down to the vagus nerve. So you've been working all your career and now everything's coming into this vagus nerve kind of final common pathway that's connecting all sorts of parts of the body that we didn't truly understand before. So could you comment about this because it's pretty striking.Svetlana Blitshteyn (37:34):Absolutely. I think this pandemic is highlighting the pitfalls of everything we didn't know but should have in the past. And I think this is one of them. How important is the autonomic nervous system and how important is the vagus nerve that is the longest nerve in the body and carries the parasympathetic outflow. And I think this is a very important point that we have to move forward. We cannot stop at the autonomic knowledge that we've gained thus far. Autonomic neurology and autonomic medicine has always been the field with fellowship, and we have American Autonomic Society as well. But I think now is a great time to move forward and study how the autonomic nervous system communicates with the immunologic system. And again, Kevin Tracey's work was groundbreaking in the sense that he connected the dots and realized that if you stimulate the vagus nerve and the parasympathetic outflow, then you can reduce pro-inflammatory cytokines and that he has shown that you can also improve or significantly such disorders like rheumatoid arthritis and other autoimmune inflammatory conditions.Svetlana Blitshteyn (39:03):Now we have the invasive vagus nerve stimulation procedures, and quite honestly, we don't want that to be the mainstream because you don't want to have a neurosurgery as you go to treatment. Of course, you want the non-invasive vagus nerve stimulation being the mainstream therapy. But I think a lot of research needs to happen and it's going to be a very much a multidisciplinary field where we'll have immunology, translational sciences, we'll have neurosurgeons like Kevin Tracey, we'll have rheumatologists, neurologists, cardiologists. We'll have a multidisciplinary collaborative group to further understand what's going on in these autoimmune inflammatory disorders, including those of post-infectious origin.Eric Topol (40:02):I certainly agree with all of your points there. I mean, I'm really struck now because the immune system is front and center with so much of what we're seeing with of course Long Covid, but also things like Alzheimer's and Parkinson's and across the board with metabolic diseases. And here we have this connection with your sweet spot of the autonomic nervous system, and we have these pathways that had not been delineated before. I didn't know too much about the cNST of the brain to be such an important connect point for this. And I wonder, so here's another example. Concurrently the glucagon-like peptide 1 (GLP-1) drugs have this pronounced effect on reducing inflammation in the body before the weight loss and in the brain through the gut-brain axis, as we recently discussed with Dan Drucker, have you ever tried a GLP-1 drug or noticed that GLP-1 drugs help people with Long Covid or the POTS problem?Svetlana Blitshteyn (41:12):So I have heard anecdotally people with Long Covid using these drugs for other reasons, saying I feel much better. In fact, I recently had a woman who said, I have never been more productive than I am now on this medication. And she used the word productive, which is important because non-productive implies so many things. It's the brain fog, it's the physical fatigue, it's the mental fatigue. So I think we are, first of all, I want to say, I always said that the brain is not separate from the body. And neurologic manifestations of systemic disease is a very big untapped area. And I think it's not going to be surprising for me to see that these drugs can improve many brain parameters and possibly even neuroinflammation. We don't know, but we certainly need to study this.Eric Topol (42:15):Yeah, it's interesting because statins had been tried for multiple sclerosis, I think maybe not with very clear cut benefit effects, but here you have a new class of drugs which eventually are going to be in pills and not just one receptor but triple receptor, much more potent than what we're seeing in the clinic today. And you wonder if we're onto an anti-inflammatory for the brain and body that could help in this. I mean, we have a crisis here with Long Covid in POTS without a remedy, without adequate resources that are being dedicated to the clinical trials that are so vital to execute and find treatments. And that's just one candidate of many. I mean, obviously there's so many possible ones on the list. So if you could design studies now based on your extraordinary rich experience with Long Covid and POTS, what would you go after right now? What do you think is the thing that's, would it be to evaluate more of these noninvasive, non-pharmacologic treatments like the vagal nerve stimulation, or are there particular drugs that you find intriguing?Svetlana Blitshteyn (43:33):Well, a few years ago we published a case series of patients with severe POTS and nothing helped them, but they improved significantly and some even made close to recovery improvement and were able to return to their careers because they were treated with immunotherapy. So the paper is a subcutaneous immunoglobulin and plasmapheresis and the improvement was remarkable. I say there was one physician there who could not start her residency. She got sick in medical school and could not start her residency due to severe POTS and no amount of beta blockers, Midodrine or Florinef helped her get out the house and out of bed. And therefore, sheer luck, she was able to get subcutaneous immunoglobulin and she improved significantly, finished her residency and is now a practicing physician. So I think when we have these cases, it's important to bring them to scientific community. And I think I'm very excited that hopefully soon we're going to have trials of immunotherapy and immunomodulating treatment options for patients with Long Covid and hopefully POTS in general, I believe in novel, but also repurposed, repurposed treatment.Svetlana Blitshteyn (45:01):IVIG has been used for decades, so it's not a new medication. And contrary to popular belief, it's actually quite safe. It is expensive, it's a blood product, but we are very familiar with it in medicine and neurology. So I think we have to look forward to everything. And as I tell my patients, I'm always aggressive with medications when they come to me and their doctor said something like, well, let's see, it's going to go away on its own or keep doing your salt and fluids intake or wear compression sucks. Well, they're already doing it. It's not helping. And now it's a good time to try everything we have. And I would like to have more. I would like to have immunotherapy available. I would like to have immunosuppressants even tried potentially, and maybe we'll be able to try medication for possible viral persistence. Let's see how that works out. We have other inflammatory modalities out there that can potentially give us the tools. You see, I think being that it's a multifactorial disorder, that I don't think it's going to be one thing for everyone. We need to have a toolbox where we're going to choose what's best for your specific case because when we talk about Long Covid, we have to remember there are many different phenotypes under that umbrella.A Serious MatterEric Topol (46:40):Now, before we wrap up, I mean I guess I wanted to emphasize how there are clinicians out there who discount Long Covid in POTS. They think it's something that is a figment of imagination. Now, on the other hand, you and I especially, you know that people are totally disabled. Certain days they can't even get out of bed, they can't get back to their work, their life. And this can go on and on as we've been discussing. So can you set it straight about, I mean, you are seeing these people every day. What do you have to say to our fellow colleague physicians who tend to minimize and say, this is extremely rare, if it even exists, and that these people have some type of psychiatric problem. And it's really, it's distressing of course, but could you speak to that?Svetlana Blitshteyn (47:39):Absolutely. So as I always say, Long Covid is not a psychiatric or psychological disorder, and it's also not a functional neurologic disorder. Now, having said that, as I just mentioned, brain is not separate from the body. And neurologic manifestations of systemic disease are numerous. We just had a paper out on neurologic manifestations of mast cell activation syndrome. So certainly some patients will develop psychiatric manifestations and some patients will develop major depression, anxiety, OCD or functional neurologic disorder. But those are complications of systemic disease, meaning that you cannot diagnose a patient with anxiety and send them off to a psychologist or a psychiatrist without diagnosing POTS and treating it. And in many cases, when you approach an underlying systemic disorder with the right medications, like dysautonomia for example, all of the symptoms including psychological and psychiatric, tend to improve as well. And certainly, there is going to be a small subset of Long Covid patients whose primary problem is psychiatric.Svetlana Blitshteyn (49:01):And I think that's totally fine. That is not to say that all Long Covid is psychiatric. Some will have significant psychiatric manifestations. I mean, there are cases of post Covid psychosis and autoimmune encephalitis and all kinds of psychiatric problems that people may develop, but I think we can't really stratify well, this is physiologic and this word functional that I'm not a fan of. This is physiologic as we see it on MRI. But here, because we don't see anything on MRI, it means you are fine and can just exercise your way out of it. So I think with this Long Covid, hopefully we'll get answers as to the pathophysiology, but also most importantly, hopefully we'll get these therapies that millions of people before Covid pandemic were looking for.Eric Topol (50:02):Well, I just want to thank you because you were onto this well over 10, 15 years before there was such a thing as Covid, you've dedicated your career to this. These are some of the most challenging patients to try to help and has to be vexing, that you can't get their symptoms resolved no less the underlying problem. And we're indebted to you, Svetlana, because you've really been ahead of the curve here. You were writing a patient book before there were such things as patient activists in Long Covid, as we've seen, which have been so many of the heroes of this whole problem. But thank you for all the work you do. We'll continue to follow. We learned from you about POTS and Long Covid from your work and really appreciate everything you've done. Thank you.Svetlana Blitshteyn (50:58):Thank you so much, Eric, for having me. As I said, it's a great honor for me to be here. Remarkable, amazing. And thank you for all this work that you're doing and being an advocate for our field because we always need great champions to help us move forward in these complicated disorders.********************************The Ground Truths newsletters and podcasts are all free, open-access, without ads.Voluntary paid subscriptions all go to support Scripps Research. Many thanks for that—they greatly helped fund our summer internship programs for 2023 and 2024.Thanks to my producer Jessica Nguyen and Sinjun Balabanoff tor audio and video support at Scripps ResearchNote: you can select preferences to receive emails about newsletters, podcasts, or all I don’t want to bother you with an email for content that you’re not interested in. Get full access to Ground Truths at erictopol.substack.com/subscribe
undefined
7 snips
May 12, 2024 • 51min

Kate Crawford: A Leading Scholar and Conscience for A.I.

Kate Crawford, a leading scholar in AI, discusses the environmental impacts of large AI systems, biases in AI data sets, exploitation of human labor in AI development, interdisciplinary collaboration in AI research, and concerns surrounding AI applications in medicine. She sheds light on the energy consumption and resource extraction involved in AI, societal biases embedded in AI, labor conditions in the industry, and ethical considerations in healthcare applications.
undefined
May 4, 2024 • 42min

Akiko Iwasaki: The Immunology of Covid and the Future

If there’s one person you’d want to talk to about immunology, the immune system and Covid, holes in our knowledge base about the complex immune system, and where the field is headed, it would be Professor Iwasaki. And add to that the topic of Women in Science. Here’s our wide-ranging conversation.A snippet of the video, Full length Ground Truths videos are posted here and you can subscribe. Ground Truths is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber.Transcript with many external link and links to the audio, recorded 30 April 2024 Eric Topol (00:06):Hello, it's Eric Topol and I'm really thrilled to have my friend Akiko Iwasaki from Yale, and before I start talking with Akiko, I just want to mention there aren't too many silver linings of the pandemic, but one for me was getting to know Professor Iwasaki. She is my go-to immunologist. I've learned so much from her over the last four years and she's amazing. She just, as you may know, she was just recently named one of the most influential people in the world by TIME100. [and also recognized this week in TIME 100 Health]. And besides that, she's been elected to the National Academy of Medicine, National Academy of Sciences. She's the president of the American Association of Immunologists and she's a Howard Hughes principal investigator. So Akiko, it's wonderful to have you to join into an extended discussion of things that we have of mutual interest.Akiko Iwasaki (01:04):Thank you so much, Eric, for having me. I equally appreciate all of what you do, and I follow your blog and tweets and everything. So thank you Eric.Eric Topol (01:14):Well, you are a phenom. I mean just, that's all I can say because I think it was so appropriate that TIME recognize your contributions, not just over the pandemic, but of course throughout your career, a brilliant career in immunology. I thought we'd start out with our topic of great interest on Long Covid. You've done seminal work here and this is an evolving topic obviously. I wonder what your latest thoughts are on the pathogenesis and where things are headed.Long CovidAkiko Iwasaki (01:55):Yeah, so as I have been saying throughout the pandemic, I think that Long Covid is not one disease. It's a collection of multiple diseases and that are sort of ending up in similar sets of symptoms. Obviously, there are over 200 symptoms and not everyone has the same set of symptoms, but what we are going for is trying to understand the disease drivers, so persistent viral infection is one of them. There are overwhelming evidence for that theory now, all the way from autopsy and biopsy studies to looking at peripheral blood RNA signatures as well as circulating spike protein and nucleocapsid proteins that are detected in people with Long Covid. Now whether that persistent virus or remnants of virus is driving the disease itself is unclear still. And that's why trials like the one that we are engaging with Harlan Krumholz on Paxlovid should tell us what percentage of the people are suffering from that type of driver and whether antivirals like Paxlovid might be able to mitigate those. If I may, I'd like to talk about three other hypotheses.Eric Topol (03:15):Yeah, I'd love for you to do that.Akiko Iwasaki (03:18):Okay, great. So the second hypothesis that we've been working on is autoimmune disease. And so, this is clearly happening in a subset of people, again, it's a heterogeneous disease, but we can actually not only look at reactogenicity of antibodies from people with Long Covid where we can transfer IgG from patients with Long Covid into an animal, a healthy animal, and really measure outcomes of a pathogenesis. So that's a functional evidence that antibodies in some people with Long Covid is really actually causing some of the damages that are occurring in vivo. And the third hypothesis is the reactivation of herpes viruses. So many of us adults have multiple latent herpes virus family members that are just dormant and are not really causing any pathologies. But in people with Long Covid, we're seeing elevated reactivation of viruses like Epstein-Barr virus (EBV) or Varicella-zoster virus (VZV) and that may again be just a signature of Long Covid, but it may also be driving some of the symptoms that people are suffering from.(04:32):So that's again, we see the signature over and over, not just our group, but multiple other groups, Michael Peluso's group, Jim Heath, and many others. So that's also an emerging evidence from multiple groups showing that. And finally, we think that inflammation that occurs during the acute phase can sort of chronically change some tissue tone. For instance, in the brain with Michelle Monje’s team, we developed a sort of localized mild Covid model of infection and showed that changes in microglia can be seen seven weeks post infection even though the virus is completely gone. So that means that inflammation that's established as a result of this initial infection can have prolonged sequence and sequela within the person and that may also be driving disease. And Eric, the reason we need to understand these diseases separately is because not only for diagnostic purposes, but for therapeutic purposes because to target a persistent virus is very different approach from targeting autoantibodies, for example.Eric Topol (05:49):Well, that's great. There's a lot to unpack there as you laid out four distinct paths that could result in the clinical syndrome and sequelae. I think you know I had the chance to have a really fun conversation with Michelle about their joint work that you've done, and she reminded me how she made a cold call to you to start as a collaboration, which I thought was fantastic. Look what that yielded. But yeah, this is fascinating because as I think you're getting at is that it may not be the same pathogenesis in any given individual so that all these, and even others might be operative. I guess maybe I first delve into the antibody story as you're well aware, we see after people get Covid a higher rate of autoimmune diseases crop up, which is really interesting because it seems to rev up self-directed immune response. And this I think many people haven't really noted yet, although obviously you're well aware of this, it's across all the different autoimmune diseases, connective tissue disease, not just one in particular. And it's, as you say, the idea that you could take the blood from a person suffering from Long Covid and give it to an experimental animal model and be able to recapitulate some of the abnormalities, it's really pretty striking. So the question I guess is if you were to do plasmapheresis and try to basically expunge these autoantibodies, wouldn't you expect people to have some symptomatic benefit pretty rapidly or is it just that the process is already far from the initiating step?Akiko Iwasaki (07:54):That's a great question. Plasmapheresis may be able to transiently improve the person if they're suffering from these autoantibody mediated diseases. People have reported, for example, IVIG treatment has dramatically improved their symptoms, but not in everybody. So it's really critical to understand who's suffering from this particular driver and appropriately treat those people. And there are many other very effective therapies in autoimmune disease field that can be repurposed for treating these patients as well.Eric Topol (08:34):The only clinical trial that has clicked so far, interestingly, came out of Hong Kong with different types of ways to manipulate the gut microbiome, which again, you know better than me is a major modulator of our immune system response. What are your thoughts about taking advantage of that way to somehow modulate this untoward immune response in people with this condition?Akiko Iwasaki (09:07):Yeah, so that is an exciting sort of development, and I don't mean to discount the importance of microbiome at all. It's just the drivers that are mentioning are something that can be directly linked to disease, but certainly dysbiosis and translocation of metabolites and microbiome itself could trigger Long Covid as well. So it's something that we're definitely keeping our eyes on. And as you say, Eric, the immune system is in intimate contact with the gut microbiome and also the gut is intimate contact with the brain. So there's a lot of connections that we really need to be paying attention to. So yeah, absolutely. This is a very exciting development.Eric Topol (09:57):And it is intriguing of course, the reactivation of viruses. I mean, we’ve learned in recent years how important EBV is in multiple sclerosis (MS). The question I have for you on that pathway, is this just an epiphenomena or do you actually think that could be a driving force in some people?Akiko Iwasaki (10:19):Yeah, so that's really hard to untangle in people. I mean, David Putrino and my team we're planning a clinical trial using Truvada. Truvada obviously is an HIV drug, but it has reported antiviral activity to Epstein-Barr virus (EBV) and others. So potentially we can try to interrogate that in people, but we're also developing mouse models that can sort of recapitulate EBV like viral reactivation and to see whether there's any sort of causal link between the reactivation and disease process.Eric Topol (10:57):Right now, recently there's been a bunch of anecdotes of people who get the glucagon-like peptide one (GLP-1) drugs which have a potent anti-inflammatory, both systemic and in the brain. I'd love to test these drugs, but of course these companies that make them or have other interests outside of Long Covid, do you think there's potential for a drug like that?Akiko Iwasaki (11:23):Yeah, so those drugs seem to have a lot of miraculous effects on every disease. So obviously it has to be used carefully because many people with Long Covid have issues with liver functions and other existing conditions that may or may not be conducive to taking those types of GLP-1 agonists. But in subset of people, maybe this can be tried, especially due to the anti-inflammatory properties, it may benefit again, a subset of people. I don't expect a single drug to cure everyone. That would be pretty amazing, but unlikely.Eric Topol (12:09):Absolutely. And it's unfortunate we are not further along in this whole story of clinical trials, testing treatments and applauding your efforts with my friend Harlan there to get into the testing which we had hoped RECOVER was going to do with their more than billion dollars or allocation, which didn't get us too far in that. Now before we leave Long Covid, which we could speak about for hours, I mean it's so darn important because so many people are really out there disabled or suffering on a daily basis or periodically they get better and then get worse again. There's been this whole idea that, oh, it's going away and that reinfections don't pose a threat. Maybe you could straighten that story out because I think there seems to be some miscues about the risk of Long Covid even as we go along with the continued circulating virus.Akiko Iwasaki (13:11):Right, so when you look at the epidemiological evidence of Long Covid, clearly in the beginning when we had no vaccines, no antivirals, no real good measure against Covid, the incident of developing Long Covid per infection was higher than a current date where we do have vaccines and Omicron may have changed its property significantly. So if you compare, let's say the Delta period versus Omicron period, there seems to be a reduced risk per infection of Long Covid. However, Omicron is super infectious. It's infected millions of people, and if you look at the total number of people suffering from Long Covid, we're not seeing a huge decline there at all because of the transmissibility of Omicron. So I think it's too early for us to say, okay, the rates are declining, we don't need to worry about it. Not at all, I think we still have to be vigilant.(14:14):We need to be up to date on vaccines and boosters because those seem to reduce the risk for Long Covid and whether Paxlovid can reduce the rate of Long Covid at the acute phase for the high risk individual, it seems to be yes, but for people who are not at high risk may or may not be very effective. So again, we just need to be very cautious. It's difficult obviously, to be completely avoiding virus at this time point, but I think masking and anything you can do, vaccination boosters is going to be helpful. And a reinfection does carry risk for developing Long Covid. So that prior infection is not going to prevent Long Covid altogether, even though the risk may be slightly reduced in the first infection. So when you think about these risks, again we need to be cognizant that reinfection and some people have multiple infections and then eventually get Long Covid, so we're just not safe from Long Covid yet.Nasal Vaccines and Mucosal ImmunityEric Topol (15:24):Right. No, I think that's the problem is that people have not acknowledged that there's an ongoing risk and that we should continue to keep our guard up. I want to applaud you and your colleagues. You recently put out [Yale School of Public Health] this multi-panel about Covid, which we'll post with this podcast that gave a lot of the facts straight and simple diagrams, and I think this is what you need is this is kind of like all your threads on Twitter. . They're always such great educational ways to get across important information. So now let's go onto a second topic of great mutual interest where you've also been a leader and that's in the mucosal nasal vaccine story. I had the privilege of writing with you a nice article in Science Immunology back in 2022 about Operation Nasal Vaccine, and unfortunately we don't have a nasal vaccine. We need a nasal vaccine against Covid. Where do we stand with this now?Akiko Iwasaki (16:31):Yeah, so you're right. I mean nasal vaccines, I don't really know what the barrier is because I think the preclinical models all support the effectiveness against transmission and infection and obviously disease. And there is a White House initiative to support rapid development of next generation vaccine, which includes mucosal vaccine, so perhaps that's sort of pushing some of these vaccine candidates forward. You're probably more familiar than me about those kinds of events that are happening. But yeah, it's unfortunate that we don't have an approved mucosal booster vaccine yet, and our research has shown that as simple as a spray of recombinant spike protein without any adjuvants are able to restimulate immune response and then establish mucosal immunity in the nasal cavity, which goes a long way in preventing infection as well as transmission. So yeah, I mean I'm equally frustrated that things like that don't exist yet.The Neomycin and Neosporin SurpriseEric Topol (17:52):Well, I mean the work that you and many other groups around the world have published on this is so compelling and this is the main thing that we don't have now, which is a way to prevent infection. And I think most of us would be very happy to have a spray that every three or four months and gave us much higher levels of protection than we're ever going to get from shots. And your whole concept of prime and spike, I mean this is something that we could have had years ago if there was a priority, and unfortunately there never has been. Now, the other day you came with a surprise in a paper on Neomycin as an alternate or Neosporin ointment. Can you tell us about that? Because that one wasn't expected. This was to use an antibiotic in a way to reduce Covid and other respiratory virus.Akiko Iwasaki (18:50):Right. So yeah, that's a little known fact. I mean, of course widespread use of antibiotics has caused some significant issues with resistance and so on. However, when you look at the literature of different types of antibiotics, we have reported in 2018 that certain types of antibiotics known as aminoglycoside, which includes Neosporin or neomycin, has this sort of unintended antiviral property by triggering Toll-like receptor 3 in specialized cell types known as conventional dendritic cell type 1. And we published that for a genital herpes model that we were working on at the time. But because it's acting on the host, the Toll-like receptor 3 on the host cell to induce interferon and interferon stimulated genes to prevent the replication of the virus, we knew that it could be pan-viral. It doesn't really matter what the virus is. So we basically leverage that discovery that was made by a postdoc Smita Gopinath when she was in the lab to see if we can use that in the nasal cavity.(20:07):And that's what Tianyang Mao, a former graduate student did, in fact. And yeah, little spray of neomycin in the nose of the mice reduce this infection as well as disease and can even be used to treat shortly after the infection disease progress and using hamster models we also showed that hamsters that are pretreated with neomycin when they were caged with infected hamsters, the transmission rate was much reduced. And we also did with Dr. Charles Dela Cruz, a small clinical trial, randomized though into placebo and Neosporin arms of healthy volunteers. We asked them to put in a pea size amount of Neosporin on a cotton swab into the nose, and they were doing that twice a day for seven days. We measured the RNA from the nose of these people and indeed see that more than half the participants in the Neosporin group had elevated interferon stimulated genes, whereas the control group, which were given Vaseline had no response. So this sort of shows the promise of using something as generic and cheap as Neosporin to trigger antiviral state in the nose. Now it does require a much larger trial making sure that the safety profiles there and effectiveness against viral infection, but it's just a beginning of a story that could develop into something useful.New Frontiers in Immunology and Tx CellsEric Topol (21:51):Yeah, I thought it was fascinating, and it does bring up, which I think has also been underdeveloped, is our approaches for interferon a frontline defense where augmenting that, just getting that exploiting the nasal mucosa, the entry site, whether it be through that means or of course through even more potent a nasal vaccine, it's like a missing, it's a hole in our whole defense of against this virus that's led to millions of people not just dying, but of course also sick and also with Long Covid around the world. So I hope that we'll see some progress, but I thought that was a really fascinating hint of something to come that could be very helpful in the meantime while we're waiting for specific nasal vaccines. Now added to all these things recently, like last week you published a paper in Cell with your husband who's in the same department, I think at Yale. Is that right? Can you tell us about that and this paper about the whole new perspectives in immunology?Akiko Iwasaki (23:05):Yeah, so my husband Ruslan Medzhitov is a very famous immunologist who's in the same department, and we've written four or five review and opinion pieces together over the years. This new one is in Cell and it's really exploring new perspectives in immunology. We were asked by the editors to celebrate the 50th anniversary of the Cell journal with a perspective on the immune system. And the immune response is just a beautiful system that is triggered in response to specific pathogens and can really provide long-term or even sometimes lifelong immunity and resistance against pathogens and it really saves our lives. Much has been learned throughout the last 20, 30 years about the innate and adaptive immune system and how they're linked. In this new perspective, we are trying to raise some issues that the current paradigm cannot explain properly, some of the mysteries that are still remaining in the immune system.(24:22):And we try to come up with new concepts about even the role of the immune system in general. For instance, is the immune system only good for fighting pathogens or can it be repurposed for conducting normal physiology in the host? And we came up with a new subset of T-cells known as, or we call it Tx cells, which basically is an interoceptive type of T-cells that monitor homeostasis in different tissues and are helping with the normal process of biology as opposed to fighting viruses or bacteria or fungi. But these cells, when they are not appropriately regulated, they are also the source of autoimmune diseases because they are by design reactive against auto antigens. And so, this is a whole new framework to think about, a different arm of the immune function, which is really looking inside of our body and not really fighting against pathogens, but we believe these cells exist, and we know that the counterpart of Tx cells, which is the T regulatory cells, are indeed well known for its physiological functions. So we're hoping that this new perspective will trigger a new set of approaches in the field to try to understand this interceptive property of T-cells.Eric Topol (25:59):Yeah, well, I thought it was fascinating, of course, and I wanted to get into that more because I think what we're learning is this immune system not only obviously is for cancer whole. We're only starting to get warmed up with immunotherapy where checkpoint inhibitors were just the beginning and now obviously with vaccines and all these different ways that we can take the CAR-T cells, engineered T-cells, take the immune system to fight cancer and potentially to even use it as a way to prevent cancer. If you have these, whether it's Tx or Tregs or whatever T-cells can do this. But even bigger than that is the idea that it's tied in with the aging process. So as you know, again, much more than I do, our senescent immune cells are not good for us. And the whole idea is that we could build immune resilience if we could somehow figure out these mysteries that you're getting at, whereby we get vulnerable just as we were with Covid. And as we get older, we get vulnerable to not just infections, but everything going wrong, whether it's the walls of our arteries or whether it's the cancer or the immunity that's going on in our brain for Alzheimer's and neurodegenerative diseases. How can we fix the immune system so that we age more healthilyThe Immune System and Healthy Aging Akiko Iwasaki (27:37):Oh yeah. A lot of billionaires are also interested in that question and are pouring money into this question. It's interesting, but when you think about the sort of evolutionary perspective, we humans are only living so long. In the very recent decades, our life expectancy used to be much shorter and all we had to survive was to reproduce and generate the next progeny. But nowadays, because of this amazing wealth and health interventions and food and everything else, we're just living so much longer than even our grandparents. The immune system didn't evolve to deal with such one to begin with. So we were doing fine living up to 30 years of age or whatever. But now that we're living up to a hundred years, the immune system isn't really designed to keep up with this kind of stressors. But I think you're getting at a very important kind of more engineering questions of how do we manipulate the immune system or rejuvenate it so that we can remain healthy into the later decades? And it is well known that the immune system itself ages and that our ability to produce new lymphocytes, for example, decline over time and thymus that is important for T-cell development shrinks over time. And so anatomically it's impossible to help stop that process. However, is there a way of, for example, transferring some factors or engineering the immune cells to remain healthy and even like hematopoiesis itself can be manipulated to perhaps rejuvenate the whole immune system in their recent papers showing that. So this is a new frontier.Eric Topol (29:50):Do you think that some point in the future, we'll ex vivo inject Yamanaka factors into these cell lines and instead of this idea that you know get young plasma to old folks, and I mean since we don't know what's in there and it doesn't specifically have an effect on immune cells, who knows how it's working, but do you foresee that that might be a potential avenue going forward or even an in vivo delivery of this?Akiko Iwasaki (30:22):Yeah, it's not impossible, right? There are really rapidly evolving technologies and gene therapies that are becoming online. So it's not impossible to think about engineering in situ as you're suggesting, but we also have to be certain that we are living longer, but also healthy. So we do have to not only just deal with the aging immune system, but preventing neurodegenerative diseases and so on. And the immune system may have a role to play there as well. So there's a lot of, I mean, I can't think of a non-genetically mediated disease that doesn't involve the immune system.Eric Topol (31:03):Sure. No, I mean, it's just, when I think about this, people keep talking about the digital era of digital biology, but I actually think of it more as digital immunobiology, which is driving this because it's center stage and in more and more over time. And the idea that I'm concerned about is that we could rejuvenate the relevant immune cells or the whole immune response, but then it's such a delicate balance that we could actually wind up with untoward, whether it's autoimmune or overly stimulated immune system. It's not such a simple matter, as I'm sure you would agree. Now, this gets me to a broader thing which you've done, which is a profound contribution in life science and medicine, which is being an advocate for women in science. And I wonder if you could speak to that because you have been such a phenomenal force propelling the importance of women in science and not just doing that passively, but also standing up for women, which is being an activist is how you get things to change. So can you tell us about your thoughts there?An Activist for Women in ScienceAkiko Iwasaki (32:22):Yeah, so I grew up in Japan, and part of the reason I left Japan at the age of 16 was that I felt very stifled because of the societal norm and expectation of what a woman should be. And I felt like I didn't have the opportunity to develop my skills as a scientist remaining in Japan. And maybe things have changed over the years, but at the time when I was growing up, that's how I felt. And so, I was very cognizant of biases in society. And so, in the US and in Canada where I also trained, there's a lot less barrier to success, and we are able to do pretty much anything we want, which is wonderful, and that's why I think I'm here. But at the same time, the inequity still exists, even in pay gaps and things like that that are easy to fix but are still kind of insidious and it's there.(33:32):And Yale School of Medicine has done a great job partly because of the efforts of women who spoke up and who actually started to collect evidence for pay gap. And now there's very little pay gap because there's active sort of involvement of the dean and everyone else to ensure equity in the medical school. But it's just a small segment of the society. We really need to expand this to other schools and making sure that women are getting paid equally as men in the same ranks. And also, I see still some sexual harassment or more just toxic environment for people in general in academia. Some PIs get away with a lot of behavior that's not conducive to a healthy environment, so I have written about that as well and how we can have antidotes for such toxic environments. And it really does require the whole village to act on it. It's not just one person speaking up. And there should be measures placed to make sure that those people who does have this tendency of abusive behavior that they can get training and just being aware of these situations and corrective behavior. So I think there's still a lot of work left in academia, but things have obviously improved dramatically over the last few decades, and we are in a very, very good place, but we just have to keep working to achieve true equity.Why Don’t We Have Immunome Check-Ups?Eric Topol (35:25):Well applauding your efforts for that, and I'm still in touch with that. We got a ways to go, and I hope that we'll see steady and even more accelerated and improvement to get to parity, which is what it should be. And I really think you've been a model for doing this. It isn't like you aren't busy with everything else, so to fit that in is wonderful. In closing up, one of the things that I wonder about is our ability to assess back to the immune system for a moment isn't what it should be. That is we do a CBC and we have how many lymphocytes, how many this, why don't we have an immunome, why doesn’t everybody serially have an immune system checkup? Because that would tell us if we’re starting to go haywire and then maybe hunt for reactivated viruses or what’s going on. Do you foresee that we could ever get to a practical immunome as we go forward? Because it seems like it’s a big missing link right now.Akiko Iwasaki (36:33):Yeah, I think that’s a great idea. I mean, I’ll be the first one to sign up for the immunome.Eric Topol (36:40):But I’m depending on you to make it happen.Akiko Iwasaki (36:44):Well, interestingly, Eric, there are lots of amazing technologies that are developed even during the pandemic, which is monitoring everything from antibody reactivity to reactivated viruses to the cytokines to every cell marker you can imagine. So the technologies out there, it’s just I think a matter of having the right set of panels that are relatively affordable because some of these things are thousands of dollars per sample to analyze, and then of course clinical validation, something that’s CLIA approved, and then we can start to, I guess the insurance company needs to also cover this, right? So we need to demonstrate the benefit to health in the long run to be able to afford this kind of immunome analysis. But I think that very wealthy people can already get this done.Eric Topol (37:43):Yeah, well, we want to make it so it's a health equity story, not of course, only for the crazy ones that are out there that are taking 112 supplements a day and whatnot. But it's intriguing because I think we might be able to get ahead of things if we had such an easy means. And as you said during the pandemic, for example, my friends here in La Jolla at La Jolla Immunology did all kinds of T-cell studies that were really insightful and of course done with you and others around the country and elsewhere to give us insights that you didn't get just from neutralizing antibodies. But it isn't something that you can get done easily. Now, I think this immunome hopefully will get us to another level in the future. One of the most striking things I've seen in our space clinically before wrapping up is to take the CD19 CAR T therapies to deplete the B cells of people with lupus, systemic sclerosis and other conditions, and completely stop their autoimmune condition. And when the B cells come back, they're not fighting themselves. They're not self-directed anymore. Would you have predicted this? This seems really striking and it may be a clue to the kind of mastering approaches to autoimmune diseases in the future.Akiko Iwasaki (39:19):Yeah, absolutely. So for multiple sclerosis, for example, where B cells weren't thought to be a key player by doing anti-CD20 depletion, there's this remarkable clinical effects. So I think we can only find the answer experimentally in people when they do these clinical trials and show this remarkable effects. That's when we say, aha, we don't really understand immunology. You know what I mean? That's when we have to be humble about what we think we understand. We really don't know until we try it. So that's a really good lesson learned. And these may be also applicable to people with autoimmune phenotype in Long Covid, right? We may be able to benefit from similar kinds of depletion therapy. So I think we have a lot to learn still.Eric Topol (40:14):Yeah, that's why, again, going back to the paper you just had in Cell about the mysteries and about some new ideas and challenging the dogma is so important. I still consider the immune system most complex one in the body by far, and I'm depending on you Akiko to unravel it, not to put any weight on your shoulders. Anyway, this has been so much fun. You are such a gem and always learning from you, and I can't thank you enough for all the work. And the fact is that you've got decades ahead of you to keep building on this. You've already done enough for many people, many scientists in your career, and I know you'll keep going. So we're all going to be following you with great interest in learning from you on a frequent basis. And I hope we'll build on some of the things we've talked about like a Long Covid treatment, treatments that are effective nasal vaccines, maybe even some dab of Neosporin, and keep on the momentum we’ve had with the understanding of the immune system, and finally, someday achieving the true parity of gender and science. And so, thank you for all that you do.Akiko Iwasaki (41:35):Thank you so much, Eric.************************CreditsHeadshot photo credits by Robert Lisak, Yale School of MedicineMy producer for Ground Truths is Jessica Nguyen, Scripps Research and our technical support for audio/video is by SInjun Balabanoff at Scripps Research.I hope you found the spot informative. Please share itThe Ground Truths newsletters and podcasts are all free, open-access, without ads.Voluntary paid subscriptions all go to support Scripps Research. Many thanks for that—they greatly helped fund our summer internship programs for 2023 and 2024.Note: you can select preferences to receive emails about newsletters, podcasts, or all I don’t want to bother you with an email for content that you’re not interested in.Comments are welcome from all subscribers. Get full access to Ground Truths at erictopol.substack.com/subscribe
undefined
Apr 28, 2024 • 36min

Aviv Regev: The Revolution in Digital Biology

Aviv Regev, a leading life scientist, discusses the revolution in digital biology enabled by deep knowledge on cells, proteins, and genes. Topics include the Human Cell Atlas, spatial omics, AI in drug discovery, and the use of transformer models in predicting antibodies and personalized cancer vaccines.
undefined
Apr 14, 2024 • 31min

Jennifer Doudna: The Exciting Future of Genome Editing

Jennifer Doudna, Nobel laureate in genome editing, discusses the exciting future of CRISPR technology. Topics include FDA approval of CRISPR therapy, treating genetic diseases, advances in genome editing, collaborative medicine innovation, preventive healthcare using genome editing, and caution in aging research.
undefined
Apr 6, 2024 • 37min

Daniel Drucker: Illuminating the GLP-1 Drug's Break Out

Daniel Drucker, a leading endocrinologist, discusses the rapid growth of GLP-1 drugs for diabetes and weight loss. They touch on the drug's impact on brain function, heart failure medications, anti-inflammatory effects, and potential for treating addiction. The conversation highlights advancements in obesity treatment and the necessity of personalized medicine approaches.
undefined
4 snips
Mar 29, 2024 • 47min

Sid Mukherjee: On A.I., Longevity and Being A Digital Human

Sid Mukherjee, renowned author and Columbia University professor, discusses AI, longevity, and digital human concepts in medicine. They explore AI in drug discovery, patient informatics, preventive measures for cancer and cardiovascular disease, autoimmune disease treatments, and the rise of young colon cancer cases.
undefined
Mar 17, 2024 • 1h 1min

Holden Thorp: Straight Talk from the Editor-in-Chief of the Science family of journals

Holden Thorp, Editor-in-Chief of the Science family of journals, discusses overseeing six journals, the revolution in science reporting towards medicalization, navigating politics in academia, AI in science publishing, the broad definition of a scientist, and challenges faced by academia with citizen science and misinformation.
undefined
4 snips
Mar 10, 2024 • 35min

Daphne Koller: The Convergence of A.I. and Digital Biology

Discussions on the convergence of AI and digital biology, exponential growth in AI technology, implications for drug discovery, aging interventions, and the innovative platform approach to revolutionize drug discovery by merging engineering, data, and machine learning.
undefined
Mar 3, 2024 • 45min

Coleen Murphy: The Science of Aging and Longevity

“A few years ago, I might have chuckled at the naiveté of this question, but now it's not so crazy to think that we will be able to take some sort of medicine to extend our healthy lifespans in the foreseeable future.”—Coleen MurphyTranscript with external linksEric Topol (00:06):Hello, this is Eric Topol from Ground Truths, and I'm just so delighted to have with me Professor Coleen Murphy, who has written this exceptional book, How We Age: The Science of Longevity. It is a phenomenal book and I'm very eager to discuss it with you, Coleen.Coleen Murphy (00:25):Thanks for having me on.Eric Topol (00:27):Oh yeah. Well, just so everyone who doesn't know Professor Murphy, she's at Princeton. She's the Richard Fisher Preceptor in Integrative Genomics, the Lewis-Sigler Institute for Integrative Genomics at Princeton, and director of the Paul Glenn Laboratories for Aging Research. Well, obviously you've been in this field for decades now, even though you're still very young. The classic paper that I can go back to would be in Nature 2003 with the DAF-16 and doubling the lifespan of C. elegans or better known as a roundworm. Would that be the first major entry you had?Coleen Murphy (01:17):Yeah, that was my postdoctoral work with Cynthia Kenyon.Eric Topol (01:20):Right, and you haven't stopped since you've been on a tear and you’ve put together a book which has a hundred pages of references in a small font. I don't know what the total number is, but it must be a thousand or something.Coleen Murphy (01:35):Actually, it's just under a thousand. That's right.Eric Topol (01:37):That's a good guess.Coleen Murphy (01:38):Good guess. Yeah.Eric Topol (01:39):So, because I too have a great interest in this area, I found just the resource that you've put together as extraordinary in terms of the science and all the work you've put together. What I was hoping to do today is to kind of take us through some of the real exciting pathways because there's a sentence in your book, which I thought was really kind of nailed it, and it actually is aligned with my sense. Obviously don't have the expertise by any means that you do here but it says, “A few years ago, I might have chuckled at the naivety of this question, but now it's not so crazy to think that we will be able to take some sort of medicine to extend our healthy lifespans in the foreseeable future.” That's a pretty strong statement for a person who's deep into the science. First I thought we'd explore healthy aging health span versus lifespan. Can you differentiate that as to your expectations?Coleen Murphy (02:54):So, I think most people would agree that they don't want to live necessary super long. What they really want to do is live a healthy life as long as they can. I think that a lot of people also have this fear that when we talk about extending lifespan, that we're ignoring that part. And I do want to assure everyone that the people in the researchers in the aging field are very much aware of this issue and have, especially in the past decade, I think put a real emphasis on this idea of quality of life and health span. What's reassuring is actually that many of the mechanisms that extend lifespan in all these model organisms also extend health span as well and so I don't think we're going to, they're not diametrically opposed, like we'll get to a healthier quality of life, I think in these efforts to extend lifespan as well.Eric Topol (03:50):Yeah, I think that's important that you're bringing that up, which is there's this overlap, like a Venn diagram where things that do help with longevity should help with health span, and we don't necessarily have to follow as you call them the immoralists, as far as living to 190 or whatever year. Now, one of the pathways that's been of course a big one for years and studied in multiple species has been caloric restriction. I wonder if you could talk to that and obviously there's now mimetics that could simulate that so you wouldn't have to go through some major dietary starvation, if you will. What are your thoughts on that pathway?Coleen Murphy (04:41):Yeah, actually I'm really glad you brought up mimetics because often the conversation starts and ends with you should eat less. I think that is a really hard thing for a lot of people to do. So just for the background, so dietary restriction or caloric restriction, the idea is that you would have to take in up to 30% less than your normal intake in order to start seeing results. When we've done this with laboratory animals of all kinds, this works from yeast all the way up through mice, actually primates, in fact, it does extend lifespan and in most metrics of health span the quality of life, it does improve that as well. On the other hand, I think psychologically it's really tough to not eat enough and I think that's a part that we kind of blindly ignore when we talk about this pathway.Coleen Murphy (05:30):And of course, if we gave any of those animals the choice of whether they want to start eating more, they would. So, it's like that's not the experiment we ever hear about. And so, the idea for studying this pathway isn't just to say, okay, this works and now we know how it works, but as you pointed out, mimetics, so can we target the molecules in the pathway so that we can help people achieve the benefits of caloric restriction without necessarily having to do the kind of awful part of restriction? I think that's really cool, and especially it might be very good for people who are undergoing certain, have certain diseases or have certain impairments that it might make it difficult ever to do dietary restrictions, so I think that's a really great thing that the field is kind of getting towards now.Eric Topol (06:15):And I think in fact, just today, it's every day there's something published now. Just today there was a University of Southern California study, a randomized study report comparing plant-based fasting-mimicking diet versus controlled diet, and showed that many metabolic features were improved quite substantially and projected that if you stayed on that diet, you'd gain two and a half years of healthy aging or that you would have, that's a bit of an extrapolation, but quite a bit of benefit. Now, what candidates would simulate caloric restriction? I mean, what kind of molecules would help us do that? And by the way, in the book you mentioned that the price to pay is that the brain slows down with caloric restrictions.Coleen Murphy (07:10):There's at least one study that shows that.Coleen Murphy (07:13):Yeah, so it's good to keep in mind. One of the big things that is being looked at as rapamycin, looking at that TOR pathway. So that's being explored as one of these really good mimetics. And of course, you have things that are analogs of that, so rapalogs, and so people are trying to develop drugs that mimic that, do the same kind of thing without probably some of the side effects that you might see with rapamycin. Metformin is another one, although it's interesting when you talk to people about metformin who work on it, it's argued about what is exactly the target of metformin. There's thought maybe also acts in the TOR pathway could affect complex one of mitochondria. Some of the things we know that they work, and we don't necessarily know how they work. And then of course there's new drugs all the time where people are trying to develop to other target, other molecules. So, we'll see, but I think that the idea of mimetics is actually really good, and that part of the field is moving forward pretty quickly. This diet that you did just mention, it is really encouraging that they don't have to take a drug if you don't want to. If you eat the right kind of diet, it could be very beneficial.Eric Topol (08:20):Yeah, no, it was interesting. I was looking at the methods in that USC paper and they sent them a box of stuff that they would eat for three cycles, multiple weeks per cycle. It was a very interesting report, we'll link to that. Before we leave the caloric restriction and these mTOR pathway, you noted in the book that there some ongoing trials like PEARL, I looked that up and they finished the trial, but they haven't reported it and it's not that large. And then there's the FAME trial with metformin. I guess we'll get a readout on these trials in the not-too-distant future. Right?Coleen Murphy (08:57):Yeah, that's the hope that especially with the Metformin trial, which I think is going to be really large the FAME trial, that just to give the listeners a little background, one of the efforts in the field is not just to show that something works, but also to convince the FDA that aging could be a pharmaceutical, a disease that we might want to have interventions for. And to do that, we need to figure out the right way to do it. We can't do 30-year studies of safety and things to make sure that something's good, but maybe there are reasonable biomarkers that would tell us whether people are going to live a long time. And so, if we can use some of those things or targeting age-related diseases where we can get a faster readout as well. Those are reasonable things that companies could do that would help us to really confirm or maybe rule out some of these pharmaceuticals as effective interventions. I think that would be really great for consumers to know, is this thing really going to do good or not? And we just don't have that right now in the field. We have a lot of people saying something will work and it might and the studies in the lab, but when we get to humans, we really need more clinical studies to really tell us that things are going to be effective.Eric Topol (10:12):Right, I'm going to get to that in a bit too because I think you're bringing up a critical topic since there's an explosion of biopharma companies in this space, billions of dollars that have been put up for in capital and the question is what's going to be the ground rules to get these potential candidate drugs to final commercial approval. But before I leave, caloric restriction and insulin signaling and the homolog and the human to what your discovery of DAF-16, FOXO and all this, I just want you to comment, it wasn't necessarily developed in the book, but as you know, the GLP-1 drugs have become just the biggest drug class in medical history, and they do have some effects here that are very interesting. They are being tested as in Alzheimer's disease. Do you see that this is a candidate too that might promote healthy aging?Coleen Murphy (11:12):Yeah, I'm so glad you brought that up because my book, I finished writing it right before all this stuff came out, and it's looking really very compelling. People are on these drugs, they lose a ton of weight, but their blood biomarkers really become very good and on top of just the changes in weight and those kinds of effects. Let me just say, I think the biggest thing, the biggest risk actually for aging people right now are cardiovascular problems, cardiovascular disease, and these drugs, no doubt, it's going to basically make a huge dent in that. I'm absolutely sure of that. What I also find really interesting with those drugs is that the users report that they have fewer cravings for other things. So, this is not being looked at to treat alcoholism and drug addiction, other things, so it really opens up a whole new world of things that are bad for us that maybe we could avoid this with these peptides. It's almost staggering. I really think this going to be a huge, and as far as an aging drug, if you reduce your weight, you improve all your cardiovascular function, you don't feel like drinking all the time, all these things might be really great and I do think that people will live longer.Eric Topol (12:32):Yeah, no, it does have that look and you just have to wonder if as these will go on to oral drugs with triple receptors and very potent, maybe even avoiding peptides in the future too, that this could wind up being something that's exceedingly common to take for reasons far removed from the initial indication of type two diabetes and more recently of course, obesity. Now the next topic I wanted to get into with you were senolytics, these agents that basically are thought to reverse aging or slow aging. And again, since everything's coming out in a daily basis, there was a trial in diabetes macular edema where giving senolytic after people had failed their usual VEGF treatment was highly successful. So, we're starting to see, at least in the eye results. I wonder if you could describe how you conceive this field of senolytics?Coleen Murphy (13:41):Actually, I think they've made great progress in the past couple of years because there were some initial failures, like some of the things for osteoarthritis that went through I think phase two, but I think that one of the great things about the longevity biotech field is that they're starting to identify not just longevity, these age-related disorders that they could actually use. And so, it's kind of doubly beneficial. It tells us that the drugs actually do something and so maybe it'll be used for something else in the future and you get through, you can test safety, but also helping people actually have a very real problem that's acute that they really need to take care of. And so that's really exciting. Then in addition to the example you just mentioned, I was at a conference last summer where it was being explored whether some of these senolytics could be helpful for middle aged survivors of childhood cancers who do show various health effects from having gone through chemotherapies at a young age. So that's really exciting. Could you help people who are not aging, but they actually are showing having problems that we kind of associate with aging. And senolytics were at least the first thing I'd heard about that are actually being used for that, so there may be other approaches that help as well, but I think that's really great.Eric Topol (15:05):Well, and just to be clear the senolytics, I guess could be categorized at least one function might be to help clear dead cells. These senescent cells are bad actors and either they're taken out or they're somehow neutralized in their impact of secreting evil humors, if you will. Are there other forms of senolytics besides that way of dealing with these senescent cells?Coleen Murphy (15:33):I know that some people are exploring senomorphs, so things that make those cells just arrest but I do want to mention, of course, we lost a great Judith Campisi recently, and she was the one who discovered and described the senescent associated secretory phenotype, and she did amazing work in that field really opening that up. So, this idea that bad cells aren't just bad because they don't function, but they're actually toxic to other cells.Coleen Murphy (16:04):That's important for listeners to know. Yeah, so I don't know. I think that one of the things I'm excited about in the aging field is that it doesn't seem like there's one magic bullet. A lot of researchers will spend their time working on that one thing so if you only talk to that one person, you might get that impression, but there's a whole host of things that for bad or good, that things go wrong when we age, but those all end up being maybe targets that could help us live longer or at least in a healthier way. And so, we've already talked about a couple of them, but readers will see as we learn more, there might be more ways to help cells survive or to help us replace ourselves, for example.Eric Topol (16:45):I mean, I think what you're bringing up here is central because there's all these different, as I can see it, shots on goal that of course could be even used as combinations, no less senolytic interventions so we're getting closer as we started this conversation to fulfilling what you, I think is in store in the years ahead, which is extraordinary. Along with the senolytics, I wonder if you could just talk a little bit about these autophagy enhancers as a class of agents, maybe first explaining autophagy and then is this a realistic goal that we should be taking autophagy enhancers, or is this something that's too generalized that might have onward mTOR effects?Coleen Murphy (17:39):Well, it's interesting. Autophagy, so just for the listeners, autophagy literally means self-eating. So this is a pathway whereby proteins basically get degraded within the cell and those parts get recycled. And the idea is that if you have a cell or protein that's damaged in some way, or it can be renewed if you induce autophagy. I think I could be wrong here, but my sense is that the cancer field is really excited about autophagy enhancers. And so, I think that's probably where we'll see the biggest breakthroughs but along the way, of course we'll know because we'll know if they're safe and if there's other off-target effects. I think that that's largely being driven by the cancer field and the longevity field is kind of a little bit behind that, so we'll learn from them. It seems like a really exciting approach as well.Eric Topol (18:34):Yeah, it does. And then as you know, the idea of giving young blood, young plasma, which there already are places that do this, that it can help people who are cognitively impaired and have basically immediate effects, and sometimes at least with some durability. It's very anecdotal, but this idea, we don't know what's in the young blood or young plasma to some extent. How do you process that?Coleen Murphy (19:10):Okay. Well, so what we do know, and this is really work that a lot of people like Saul Villeda and Tony Wyss-Coray have done where they really have, they've taken that blood or plasma and then found the parts in the plasma that actually do specific jobs. And so, we actually are starting to learn a lot about that and that's exciting because of course, we don't really want to give people young blood. What we really would like to do is find out is there a particular factor in the blood? And there seems to be many that could be beneficial. And so, we really are getting close. We as a field, and specifically like the research I just mentioned and that's exciting because you can imagine, for example, if there's one factor that's in blood, that's in young blood, that's very helpful, manufacturing, a lot of that particular thing.Coleen Murphy (20:01):The other exciting thing, again, this is Saul Villeda’s lab that found that exercise mice. So even if they're the same age mice, if one of them is exercised, it makes factors that actually from the liver of the mouse upon exercise, that then gets secreted and then affect, improve cognitive function as well. So it seems like even within the blood, there's multiple different ways to get blood factors that are beneficial, whether they're from young blood or from exercise blood. And so, there's a lot of things we don't yet know, but I do think that field is moving very fast and they're identifying a lot of things. In fact, so I'm the director of Simons Collaboration Plasticity in the Aging Brain, and on that website we're developing basically a page that can tell you what are the factors and what has it been shown to be associated with, because we're very interested in slowing normal cognitive aging and blood factors seem to be one of the really powerful ways that might be available to us very soon to be able to improve that.Eric Topol (21:03):Yeah, no, I'm glad you mentioned that, Coleen. I think the point that you made regarding exercise, I certainly was struck by that because in the book, because we've known about this association with exercise and cognition, and this I think is certainly one potential link. An area that is also fascinating is epigenetics, so a colleague of mine here in the Mesa, Juan Carlos Belmonte, who was at Salk and left to go to Altos, one of these many companies that are trying to change the world in health span and lifespan. Anyway, he had published back several years ago.Coleen Murphy (21:53):Yeah, 2016.Eric Topol (21:54):Yeah, CRISPR basically modulation of the epigenome through editing and showed a number of through specific pathways, a number of pretty remarkable effects. I wonder if you could comment about epigenetics, and then I also want to get into this fascinating topic of transgenerational inheritance, which may be tied of course to that. So, what about this pathway? Is there something to it?Coleen Murphy (22:29):Well, absolutely. I just think we need to learn a lot more about it. So just for the listener, so epigenetics, we think about genetics that's basically based on DNA and chromosomes. And so, when we think about epigenetics, that could be either, we could be talking about modulation of the histone marks on the chromosomes that allow the genes to be expressed or be silenced. And then on the DNA itself, there are methylation marks. And so, people have used, of course, Steve developed a, sorry, I'm sorry. Steve Horvath developed a very nice, he was first to develop a DNA methylation clock. So this idea that you could, and that was really interesting because he based it on, he used this machine learning method to narrow down to the 353 marks that were actually predictive or correlated with age, but we don't understand how it biologically what that manifests in. I think that's not well understood. At the chromatin level, there's a lot of work on the specific histone marks that may change, for example, how genes are transcribed and so understanding that better will maybe help us understand what those changes. There's things called epigenetic drift, so genes stop being carefully regulated with age, and then how can we make that maintain better with age? It's one of the goals of the field in addition to basically understanding what's going on at the epigenetic level.Eric Topol (24:01):So now of course, could we alter that? Oh, it is fascinating as you say, that you could have the Horvath clock to so accurately predict a person's biological age. And by the way, just a few days ago, there was a review by all these clock aging folks in nature medicine about the lack of standards. There's so many clocks to basically determine biological age versus chronological age. Before we get into the transgenerational inheritance, what is your sense? Obviously, these are getting marketed now, and this field is got ahead of its skis, if you will, but what about these biologic age markers?Coleen Murphy (25:02):Yeah, I'm glad to hear that. I haven't seen that review. I should look it up. It's good to know that the players in the field are addressing those points. So just for the listeners, so these DNA methylation clocks so when Steve Horvath developed the first one, it was based on the controls from a very large number of cancer controls for other reasons, so he used a huge amount of information. It really depended on the, he was trying to develop a clock that was independent of which tissue, but it turned out there's more and more clocks that are tissue specific and really organism specific, species specific. It really depends on what you're looking at to make these, and whether you're looking at chronological age or trying to predict biological age. I think it's a little frustrating because what you'd really like to know as a consumer, if you send off for one of these clock kits, is it right?Coleen Murphy (25:57):What's the margin of error? If I took it every week, would I get the same number? And so, I think my sense is that people take it until they get a low number then, but you'd really like to know if they work, because if you want to take it, do a control and they start, get your clock number and then start taking some intervention and ask whether it works, right? Yeah. So, I think because the players in the field recognize these issues, they're going to straighten it out, but I think one part that drives a little bit of the problem is that we don't understand what that DNA methylation mark change translates into biologically. If we understood that better, I think we'd have a better feeling about it. Anne Brunet and Tony Wyss-Coray maybe a year and a half ago, they had a nice paper where two years ago where they looked at, they use a different type of clock, a transcriptional clock, and that worked really well. So they were looking at transcriptional clock in the subventricular zone, and they were able to actually see changes not just with age, but also when there was an intervention. I can't remember if they look at dietary restriction and then maybe an exercise in the mice. And so that's important for us to know how well those clocks work.Coleen Murphy (27:13):I think it'll get there. It'll get there.Eric Topol (27:15):You don't want to pay a few hundred dollars and then be told that you're 10 years older biologically than your chronologic age, especially if it's wrong. Right?Coleen Murphy (27:25):Yes. It'll get there. I think it may not be quite there yet.Eric Topol (27:30):And by the way, while we're on that, the organ clocks paper, in fact, just a recent weeks, I did interview Tony Wyss-Coray from Stanford, and we talked about what I consider really a seminal paper because using plasma proteins, they're able to basically clock each organ. And that seems like a promising approach, which could also help prove the case that you're changing something favorably with one of these various intervention classes or categories. Do you think that's true?Coleen Murphy (28:05):That feels more real directly looking at the proteins then.Eric Topol (28:08):Yeah, exactly. I thought that was really exciting work, and I'm actually going to visit with Tony in a few weeks to discuss it further. So excited about it.Coleen Murphy (28:18):That's great. He's doing great work, so it'll be a fascinating conversation.Eric Topol (28:21):Yeah, well this is also fascinating. Now, transgenerational inheritance is a very controversial topic in humans, which it is not so much in every other species. Can you explain why that is?Coleen Murphy (28:38):Well, there's a lot of, I would say emotional baggage attached here, right? Because that's what people are talking about, like transgenerational trauma. There's no doubt that traumatic experiences in childhood actually do seem to change the genome and change have very real biological effects. And that's been shown. So that's within the first generation. It's also no doubt that in other organisms, like in plants like DNA methylation, that's exactly how they regulate things, and that's multiple generations. So that's kind of the norm. And so, the question for humans is whether something like this, like a traumatic experience or starvation or thing, has an effect, not just on the person who's experiencing it, but also on their progeny, even on their grand progeny. And so, it's tough, right? Because the data that are out there are from pretty terrible experiences like the Dutch hunger winter. And so, there's a limited set of data, and some of those data look good, and some of them look weaker. Yeah, I think that we still need to figure out what's going on there, and if it's real, it'd be interesting to know. Are there ways, for example, with these epigenetic modulators, are there ways that you could help people be healthier by erasing some of those marks of trauma, generational trauma?Eric Topol (30:03):Yeah. So, I mean, the theory as you're getting to would be you could change the epigenome, whether it's through chromatin, acetylation, methylation, somehow through these experiences and it would be going through down through multiple generations. The reason I know it's controversial is when I reviewed Sid Mukherjee's book, the Gene, he had put in that it was real in humans, and the attack dogs came out all over the place. Now, we've covered a lot of these pathways. One that we haven't yet touched on is the gut microbiome, and the idea here, of course, it could be somewhat linked to the caloric restriction story, but it seems to be independent of that as well. That is there, our immunity is very much influenced by our gut microbiome. There's the gut brain axis and all sorts of interactions going on there, but what about the idea of using probiotics and particular bacterial species as a introducing the people as an idea in the future to promote health span?Coleen Murphy (31:18):Yeah, it's a great idea. So, I just want to back up and say the microbiome, the reason it's so fraught is because for a long time, people had confused correlation and causation. So, they would see that a person who has X disease has a difference in the microbiome from people who don't have that disease. And so, the question was always, do they have that disease because of a difference in the microbiome or the disease influence in the microbiome? And of course, even things that's eating different food. For example, if a child with autism doesn't want to eat certain range of food, it's going to have an effect on the microbiome. That does not mean the microbiome cause their autism. And so that's something where, and the same thing with Alzheimer's disease patients. I think that's often the source of some of this confusion. I think people wish that they could cure a lot of diseases by taking a probiotic.Coleen Murphy (32:09):On the other hand, now there's actually some really compelling data. Dario Valenzano's lab did a really nice experiment in killifish, which is my second favorite aging model research organism. So killifish, turquoise killifish, only live a few months. And so, you can do aging studies really quickly and what Dario's group did was they took the microbiome at middle aged fish, they wiped out their microbiome with antibiotics, and they added back either young or same age, and they saw a really nice extension of lifespan with the young microbiome. So that suggests, in that case where everything else is the same, it really does have a nice effect. John Cryan’s group in Ireland did something similar with mice, and they showed that there was a beneficial effect on cognitive function in older mice. So those are two examples of studies where it really does seem like there is an effect, so it could be beneficial. And then there's of course things like microbiome transfer for people who are in the hospital who have had other things, because your microbiome also helps you prevent other diseases. Those being there, if you wipe out all of your microbiome, you can actually get infected with other things. It's actually a protective barrier. There's a lot of benefits, I think in order to, we don't know a ton about how to control it. We know there are these, it's gross, but fecal microbiome transplantation.Eric Topol (33:42):FMT. Yeah, yeah.Coleen Murphy (33:44):Exactly. And so, I think that is kind of the extreme, but it can be done. I think in appropriate cases it could be a very good strategy.Eric Topol (33:53):It's interesting. There was a study about resilience of the immune system, which showed that women have a significant advantage in that they have just the right balance of not having a hyper inflammatory reaction to whether it's a pathogen or other stimulus. And they also have, of course, an immunocompetent system to respond, so unlike men overall, that although the problem of course with more prone to autoimmunity because of having two x chromosomes and exist or whatever other factors. But also, there's a balance that there's an advantage, in the immune system as a target for health span and lifespan, a lot of things that we've talked about have some interaction with the immune system. Is there anything direct that we can do to promote a healthier immune system and avoid immunosenescence and inflammaging or immuno aging or whatever you want to call it?Coleen Murphy (35:04):Sure, I will admit that immunology is a field that I want to learn more about, but I do not know enough about it to give a really great answer. I think it's one of the things I kind of shied away from when I wrote the book that if I were to rewrite it, I would add a whole new section on it. I think that's a really booming field, this interaction between immunology and aging. Obviously, there's immune aging, but what does that really mean?Coleen Murphy (35:28):I feel like I can't give you a really intelligent answer about that. Even though I'd like to, and I don't know how much of it's because there's just sort of this general idea that the immune system stops functioning well, but I do feel like the immune system is actually so mysterious. I have a peanut allergy, for example. We don't even really, I mean, we can prime ourselves against that now. We can give kids little bits of peanuts, but all the things that I feel like immunology is the one that's probably taking off the most, and we'll probably in a decade know way more about it than we do now, but I can't give you a very smart answer right now.Eric Topol (36:09):Yeah, no, I do think it's really provocative and the fact that if you have these exhausting T cells that are basically your backup system of your immune system, if they're not working, that's not good. And maybe they can be revved up without being problematic. We'll see.Coleen Murphy (36:27):And I guess the real question is do we need to do something independent or is that folded into everything else? If you were giving someone a drug that seemed very good systemically or some of these blood factors, would you have to do something special just for the immune system or is that something that would also be effective? I feel like that would be good to know.Eric Topol (36:44):Now the other area that I want to bring up, which is a little more futuristic is genome editing. So recently when I spoke to David Liu, he mentioned, well, actually it was Jennifer Doudna who first put it out there, but we discussed the idea of changing the people like me who are APOE4 carriers to APOE2, which is associated with longer life and all these other good things. Why don't we just edit ourselves to do that? Is that a prospect that you think ever could be actualized?Coleen Murphy (37:20):Well, I was just at a talk by Britt Adamson just moments ago, and that field is moving really fast, right? All the work that David Liu has done, and it's really exciting, this idea that you can now cure sickle cell anemia.Coleen Murphy (37:35):Fascinating. And I think Jennifer Doudna rightly proposed early on that what we should really be hitting first are like blood. Blood's really good because it's not hitting the germline. It's really something where we can help people at that stage. I was thinking about that while Britt was talking, what are the things we'd really want to address with CRISPR? I'm not sure how high up in the list aging related factors would be compared to a lot of childhood diseases, things that are really debilitating, but certainly is true since when we're looking at APOE4. I think that's the one exception because that is so strongly correlated with healthy lifespan and Alzheimer's and things, so we really want to do something about that. The question is how would we do that? That's not a blood factor. I think we'd have to think hard about that, but it is on the list of looming on the horizon.Eric Topol (38:35):I wouldn't be surprised if someday, and David, of course thought it's realistic, but it's not, obviously in the short term. Well, this has been enthralling to go through all these possibilities. I guess when you put it all together, there's just so many ways that we might be able to, and one of the things that you also pointed out in your book, which something that should not be forgotten, is the fact that all these things could even worsen the inequities that we face today. That is you have any one of these click, if not multiple, it isn't like they're going to be available to all. And the problem we have now, especially in this country without universal health and access issues, could be markedly exacerbated as we're seeing with the GLP-1 drugs too, by the way.Coleen Murphy (39:27):Absolutely.Eric Topol (39:28):So, I just want to give you a chance to reinforce what you wrote in the book, because I think this is where a lot of times science leads and doesn't realize the practical implications of who would benefit.Coleen Murphy (39:42):Yeah, I think actually for aging research often, even when I first started doing this work back in 2000, the first thing people would ask me if they're below a certain age was, don't you think that's terrible? Make the rich people just live the longest? And they're not wrong about that. I think what it can, we should raise awareness about the fact that even these things that we consider simple, like doing caloric restriction or getting exercise, even those things are not that straightforward if you're working two jobs or if you don't have access to excellent foods in your neighborhood, right? Fruits and vegetables. If we really want to not just extend longevity but raise life expectancy, then we should be doing a lot more that's for improving the quality of life of many people. And so there is that idea. On the other hand, I do want to point out that as we discover more and more of these things, like metformin is off patent, it's like it's really old. And so, it's more of these things get discovered and more broadly used. I do think that that may be a case where we could end up having more people might have access to things more easily. So that's my hope.Coleen Murphy (40:57):I don't want to discourage anyone from developing a longevity dry. I think eventually that could help a lot of people if it's not too absurdly expensive.Eric Topol (41:04):Yeah, no, I certainly agree. And one last footnote is that we did a study called The Wellderly here, about 1,400 people over age 85 who'd never been sick, so our goal here wasn't lifespan. It was to understand if there was genomics, which we did whole genome sequencing of this group. We didn't find much like the study that you cited in the book by the Calico group. And so just to give hope that people, if they don't have what they think are family genetics of short life or short health span, that may not be as much to that as a lot of people think. Any final thoughts about that point? Because it's one that's out there and data goes in different directions.Coleen Murphy (41:55):Yeah. The Calico study you mentioned, I think that's the one where they found that your health or lifespan mostly went with almost like your in-laws, which actually points again to your socioeconomic group probably you marry people, most people marry people are in a similar socioeconomic group. That's probably what that mostly had to do with. I do think if I'm going to say one thing because a lot of these drugs are on the horizon, they're not yet available, or there's nothing I can hang onto for an FDA approved drug to extend that. I do think the one thing that I would encourage people to do even more than the dietary restriction stuff, it is exercise because that's just generally beneficial in so many different ways. And so, if we can get people doing a little more exercise, I think that would be the one thing that probably could help a lot of people.Eric Topol (42:40):Well, I'm glad we are winding up with that because I think the data from lifestyle, which is exercise as you're pointing out, as well as nutrition and sleep.Coleen Murphy (42:54):All the boring things we already thought, right.Eric Topol (42:55):That we know about, but we don't necessarily put in our daily lives. There's a lot there. There's no question that studies, I think, really have reinforced that even recent one. Well, what a pleasure to talk to you about this and do this tour of the various exciting prospects. I hope I haven't missed anything. I know we can't go over all the pathways, and obviously there've been some bust in the past, which we don't need to review like the famous Resveratrol Sirtuin story, which you addressed in the book. I do want to encourage people that this book is extraordinary. Your work that you put into it had to be consumptive for I don't know how many years of work.Coleen Murphy (43:37):There was many years of work. My editor, we sat down to lunch right after it finished. She was like, so what are you going to work on for your next book?Eric Topol (43:50):Well, it's a scholarly approach to a very important field. If you can influence the aging process, you influence every part of our body function. The impact here is profound, and the contribution that you've made in your science as well as in your writing here is just so terrific. So thank you, Coleen. Thanks so much for joining us today.Coleen Murphy (44:17):Thank you so much. It's been a pleasure.Thanks for listening and/or reading this edition of Ground Truths, aimed at bringing you cutting-edge biomedical advances via analyses and podcasts.All content is free. Voluntary paid subscriptions go to support Scripps Research and have funded our summer intern program. Get full access to Ground Truths at erictopol.substack.com/subscribe

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode