Emergent constraints, arising from previous adaptations, create smaller, local valleys, potentially trapping evolution in suboptimal states.
Understanding these physical and emergent constraints is crucial for understanding the trajectory of evolution.
00:00
Transcript
Episode notes
Randomness plays an important role in the evolution of life (as my evil twin will tell you). But random doesn't mean arbitrary. Biological organisms are physical objects, after all, and subject to the same laws of physics as non-biological matter is. Those laws place constraints on how organisms can fulfill their basic functions of metabolism, reproduction, motility, and so on. Easy to say, but how can we turn this into quantitative understanding of actual organisms? Today I talk with physical biologist Chris Kempes about how physics can help us understand the size of organisms, their metabolisms, and features of major transitions in evolution.
Chris Kempes received his Ph.D. in physical biology from the Massachusetts Institute of Technology. He is currently Professor and a member of the Science Steering Committee at the Santa Fe Institute. His research involves the origin of life and the constraints placed by physics on biological function and evolution.