Data Skeptic cover image

Data Skeptic

Latest episodes

undefined
Jul 19, 2021 • 34min

Predicting Stock Prices

Today on the show we have Andrea Fronzetti Colladon (@iandreafc), currently working at the University of Perugia and inventor of the Semantic Brand Score, joins us to talk about his work studying human communication and social interaction. We discuss the paper Look inside. Predicting Stock Prices by Analyzing an Enterprise Intranet Social Network and Using Word Co-Occurrence Networks.
undefined
Jul 12, 2021 • 34min

N-Beats

Today on the show we have Boris Oreshkin @boreshkin, a Senior Research Scientist at Unity Technologies, who joins us today to talk about his work N-BEATS: Neural Basis Expansion Analysis for Interpretable Time Series Forecasting. Works Mentioned: N-BEATS: Neural Basis Expansion Analysis for Interpretable Time Series Forecasting By Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, Yoshua Bengio https://arxiv.org/abs/1905.10437 Social Media Linkedin Twitter 
undefined
Jul 6, 2021 • 36min

Translation Automation

Today we are back with another episode discussing AI in the work field. AI has, is, and will continue to facilitate the automation of work done by humans. Sometimes this may be an entire role. Other times it may automate a particular part of their role, scaling their effectiveness. Carl Stimson, a Freelance Japanese to English translator, comes on the show to talk about his work in translation and his perspective about how AI will change translation in the future. 
undefined
Jun 28, 2021 • 23min

Time Series at the Beach

Shane Ross, Professor of Aerospace and Ocean Engineering at Virginia Tech University, comes on today to talk about his work “Beach-level 24-hour forecasts of Florida red tide-induced respiratory irritation.”
undefined
Jun 21, 2021 • 36min

Automatic Identification of Outlier Galaxy Images

Lior Shamir, Associate Professor of Computer Science at Kansas University, joins us today to talk about the recent paper Automatic Identification of Outliers in Hubble Space Telescope Galaxy Images. Follow Lio on Twitter @shamir_lior
undefined
Jun 16, 2021 • 29min

Do We Need Deep Learning in Time Series

Shereen Elsayed and Daniela Thyssens, both are PhD Student at Hildesheim University in Germany, come on today to talk about the work “Do We Really Need Deep Learning Models for Time Series Forecasting?”
undefined
Jun 11, 2021 • 27min

Detecting Drift

Sam Ackerman, Research Data Scientist at IBM Research Labs in Haifa, Israel, joins us today to talk about his work Detection of Data Drift and Outliers Affecting Machine Learning Model Performance Over Time. Check out Sam's IBM statistics/ML blog at: http://www.research.ibm.com/haifa/dept/vst/ML-QA.shtml
undefined
May 31, 2021 • 25min

Darts Library for Time Series

Julien Herzen, PhD graduate from EPFL in Switzerland, comes on today to talk about his work with Unit 8 and the development of the Python Library: Darts. 
undefined
May 24, 2021 • 32min

Forecasting Principles and Practice

Welcome to Timeseries! Today’s episode is an interview with Rob Hyndman, Professor of Statistics at Monash University in Australia, and author of Forecasting: Principles and Practices.
undefined
May 21, 2021 • 9min

Prequisites for Time Series

Today's experimental episode uses sound to describe some basic ideas from time series. This episode includes lag, seasonality, trend, noise, heteroskedasticity, decomposition, smoothing, feature engineering, and deep learning.  

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode