Data Skeptic cover image

Data Skeptic

Latest episodes

undefined
Sep 27, 2021 • 34min

Change Point Detection in Continuous Integration Systems

David Daly, Performance Engineer at MongoDB, joins us today to discuss "The Use of Change Point Detection to Identify Software Performance Regressions in a Continuous Integration System". Works Mentioned The Use of Change Point Detection to Identify Software Performance Regressions in a Continuous Integration System by David Daly, William Brown, Henrik Ingo, Jim O’Leary, David BradfordSocial Media David's Website David's Twitter Mongodb
undefined
Sep 20, 2021 • 24min

Applying k-Nearest Neighbors to Time Series

Samya Tajmouati, a PhD student in Data Science at the University of Science of Kenitra, Morocco, joins us today to discuss her work Applying K-Nearest Neighbors to Time Series Forecasting: Two New Approaches.
undefined
Sep 13, 2021 • 28min

Ultra Long Time Series

Dr. Feng Li, (@f3ngli) is an Associate Professor of Statistics in the School of Statistics and Mathematics at Central University of Finance and Economics in Beijing, China. He joins us today to discuss his work Distributed ARIMA Models for Ultra-long Time Series.
undefined
Sep 6, 2021 • 26min

MiniRocket

Angus Dempster, PhD Student at Monash University in Australia, comes on today to talk about MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification, a fast deterministic transform for time series classification. MINIROCKET reformulates ROCKET, gaining a 75x improvement on larger datasets with essentially the same performance. In this episode, we talk about the insights that realized this speedup as well as use cases.
undefined
Aug 30, 2021 • 23min

ARiMA is not Sufficient

Chongshou Li, Associate Professor at Southwest Jiaotong University in China, joins us today to talk about his work Why are the ARIMA and SARIMA not Sufficient.
undefined
Aug 23, 2021 • 36min

Comp Engine

Ben Fulcher, Senior Lecturer at the School of Physics at the University of Sydney in Australia, comes on today to talk about his project Comp Engine. Follow Ben on Twitter: @bendfulcher For posts about time series analysis : @comptimeseries comp-engine.org
undefined
Aug 16, 2021 • 31min

Detecting Ransomware

Nitin Pundir, PhD candidate at University Florida and works at the Florida Institute for Cybersecurity Research, comes on today to talk about his work “RanStop: A Hardware-assisted Runtime Crypto-Ransomware Detection Technique.” FICS Research Lab - https://fics.institute.ufl.edu/  LinkedIn - https://www.linkedin.com/in/nitin-pundir470/
undefined
Aug 9, 2021 • 23min

GANs in Finance

Florian Eckerli, a recent graduate of Zurich University of Applied Sciences, comes on the show today to discuss his work Generative Adversarial Networks in Finance: An Overview.
undefined
Aug 2, 2021 • 27min

Predicting Urban Land Use

Today on the show we have Daniel Omeiza, a doctoral student in the computer science department of the University of Oxford, who joins us to talk about his work Efficient Machine Learning for Large-Scale Urban Land-Use Forecasting in Sub-Saharan Africa.
undefined
Jul 26, 2021 • 34min

Opportunities for Skillful Weather Prediction

Today on the show we have Elizabeth Barnes, Associate Professor in the department of Atmospheric Science at Colorado State University, who joins us to talk about her work Identifying Opportunities for Skillful Weather Prediction with Interpretable Neural Networks. Find more from the Barnes Research Group on their site. Weather is notoriously difficult to predict. Complex systems are demanding of computational power. Further, the chaotic nature of, well, nature, makes accurate forecasting especially difficult the longer into the future one wants to look. Yet all is not lost! In this interview, we explore the use of machine learning to help identify certain conditions under which the weather system has entered an unusually predictable position in it’s normally chaotic state space.

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode