The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) cover image

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

Latest episodes

undefined
Oct 28, 2021 • 38min

Multi-task Learning for Melanoma Detection with Julianna Ianni - #531

In today’s episode, we are joined by Julianna Ianni, vice president of AI research & development at Proscia.In our conversation, Julianna shares her and her team’s research focused on developing applications that would help make the life of pathologists easier by enabling tasks to quickly and accurately be diagnosed using deep learning and AI.We also explore their paper “A Pathology Deep Learning System Capable of Triage of Melanoma Specimens Utilizing Dermatopathologist Consensus as Ground Truth”, while talking through how ML aids pathologists in diagnosing Melanoma by building a multitask classifier to distinguish between low-risk and high-risk cases. Finally, we discussed the challenges involved in designing a model that would help in identifying and classifying Melanoma, the results they’ve achieved, and what the future of this work could look like.The complete show notes for this episode can be found at twimlai.com/go/531.
undefined
Oct 26, 2021 • 45min

House Hunters: Machine Learning at Redfin with Akshat Kaul - #530

Today we’re joined by Akshat Kaul, the head of data science and machine learning at Redfin. We’re all familiar with Redfin, but did you know that redfin.com is the largest real estate brokerage site in the US? In our conversation with Akshat, we discuss the history of ML at Redfin and a few of the key use cases that ML is currently being applied to, including recommendations, price estimates, and their “hot homes” feature. We explore their recent foray into building their own internal platform, which they’ve coined “Redeye”, how they’ve built Redeye to support modeling across the business, and how Akshat thinks about the role of the cloud when building and delivering their platform. Finally, we discuss the impact the pandemic has had on ML at the company, and Akshat’s vision for the future of their platform and machine learning at the company more broadly. The complete show notes for this episode can be found at twimlai.com/go/530.
undefined
Oct 21, 2021 • 48min

Attacking Malware with Adversarial Machine Learning, w/ Edward Raff - #529

Today we’re joined by Edward Raff, chief scientist and head of the machine learning research group at Booz Allen Hamilton. Edward’s work sits at the intersection of machine learning and cybersecurity, with a particular interest in malware analysis and detection. In our conversation, we look at the evolution of adversarial ML over the last few years before digging into Edward’s recently released paper, Adversarial Transfer Attacks With Unknown Data and Class Overlap. In this paper, Edward and his team explore the use of adversarial transfer attacks and how they’re able to lower their success rate by simulating class disparity. Finally, we talk through quite a few future directions for adversarial attacks, including his interest in graph neural networks.The complete show notes for this episode can be found at twimlai.com/go/529.
undefined
Oct 18, 2021 • 37min

Learning to Ponder: Memory in Deep Neural Networks with Andrea Banino - #528

Today we’re joined by Andrea Banino, a research scientist at DeepMind. In our conversation with Andrea, we explore his interest in artificial general intelligence by way of episodic memory, the relationship between memory and intelligence, the challenges of applying memory in the context of neural networks, and how to overcome problems of generalization. We also discuss his work on the PonderNet, a neural network that “budgets” its computational investment in solving a problem, according to the inherent complexity of the problem, the impetus and goals of this research, and how PonderNet connects to his memory research. The complete show notes for this episode can be found at twimlai.com/go/528.
undefined
Oct 14, 2021 • 43min

Advancing Deep Reinforcement Learning with NetHack, w/ Tim Rocktäschel - #527

Take our survey at twimlai.com/survey21!Today we’re joined by Tim Rocktäschel, a research scientist at Facebook AI Research and an associate professor at University College London (UCL). Tim’s work focuses on training RL agents in simulated environments, with the goal of these agents being able to generalize to novel situations. Typically, this is done in environments like OpenAI Gym, MuJuCo, or even using Atari games, but these all come with constraints. In Tim’s approach, he utilizes a game called NetHack, which is much more rich and complex than the aforementioned environments.  In our conversation with Tim, we explore the ins and outs of using NetHack as a training environment, including how much control a user has when generating each individual game and the challenges he's faced when deploying the agents. We also discuss his work on MiniHack, an environment creation framework and suite of tasks that are based on NetHack, and future directions for this research.The complete show notes for this episode can be found at twimlai.com/go/527.
undefined
Oct 11, 2021 • 41min

Building Technical Communities at Stack Overflow with Prashanth Chandrasekar - #526

In this special episode of the show, we’re excited to bring you our conversation with Prashanth Chandrasekar, CEO of Stack Overflow. This interview was recorded as a part of the annual Prosus AI Marketplace event. In our discussion with Prashanth, we explore the impact the pandemic has had on Stack Overflow, how they think about community and enable collaboration in over 100 million monthly users from around the world, and some of the challenges they’ve dealt with when managing a community of this scale. We also examine where Stack Overflow is in their AI journey, use cases illustrating how they’re currently utilizing ML, what their role is in the future of AI-based code generation, what other trends they’ve picked up on over the last few years, and how they’re using those insights to forge the path forward.The complete show notes for this episode can be found at twimlai.com/go/526.
undefined
Oct 7, 2021 • 40min

Deep Learning is Eating 5G. Here’s How, w/ Joseph Soriaga - #525

Today we’re joined by Joseph Soriaga, a senior director of technology at Qualcomm. In our conversation with Joseph, we focus on a pair of papers that he and his team will be presenting at Globecom later this year. The first, Neural Augmentation of Kalman Filter with Hypernetwork for Channel Tracking, details the use of deep learning to augment an algorithm to address mismatches in models, allowing for more efficient training and making models more interpretable and predictable. The second paper, WiCluster: Passive Indoor 2D/3D Positioning using WiFi without Precise Labels, explores the use of rf signals to infer what the environment looks like, allowing for estimation of a person’s movement. We also discuss the ability for machine learning and AI to help enable 5G and make it more efficient for these applications, as well as the scenarios that ML would allow for more effective delivery of connected services, and look towards what might be possible in the near future. The complete show notes for this episode can be found at twimlai.com/go/525.
undefined
Oct 4, 2021 • 47min

Modeling Human Cognition with RNNs and Curriculum Learning, w/ Kanaka Rajan - #524

Today we’re joined by Kanaka Rajan, an assistant professor at the Icahn School of Medicine at Mt Sinai. Kanaka, who is a recent recipient of the NSF Career Award, bridges the gap between the worlds of biology and artificial intelligence with her work in computer science. In our conversation, we explore how she builds “lego models” of the brain that mimic biological brain functions, then reverse engineers those models to answer the question “do these follow the same operating principles that the biological brain uses?”We also discuss the relationship between memory and dynamically evolving system states, how close we are to understanding how memory actually works, how she uses RNNs for modeling these processes, and what training and data collection looks like. Finally, we touch on her use of curriculum learning (where the task you want a system to learn increases in complexity slowly), and of course, we look ahead at future directions for Kanaka’s research. The complete show notes for this episode can be found at twimlai.com/go/524.
undefined
Sep 30, 2021 • 41min

Do You Dare Run Your ML Experiments in Production? with Ville Tuulos - #523

Today we’re joined by a friend of the show and return guest Ville Tuulos, CEO and co-founder of Outerbounds. In our previous conversations with Ville, we explored his experience building and deploying the open-source framework, Metaflow, while working at Netflix. Since our last chat, Ville has embarked on a few new journeys, including writing the upcoming book Effective Data Science Infrastructure, and commercializing Metaflow, both of which we dig into quite a bit in this conversation. We reintroduce the problem that Metaflow was built to solve and discuss some of the unique use cases that Ville has seen since it's release, the relationship between Metaflow and Kubernetes, and the maturity of services like batch and lambdas allowing a complete production ML system to be delivered. Finally, we discuss the degree to which Ville is catering is Outerbounds’ efforts to building tools for the MLOps community, and what the future looks like for him and Metaflow. The complete show notes for this episode can be found at twimlai.com/go/523.
undefined
Sep 27, 2021 • 49min

Delivering Neural Speech Services at Scale with Li Jiang - #522

Today we’re joined by Li Jiang, a distinguished engineer at Microsoft working on Azure Speech. In our conversation with Li, we discuss his journey across 27 years at Microsoft, where he’s worked on, among other things, audio and speech recognition technologies. We explore his thoughts on the advancements in speech recognition over the past few years, the challenges, and advantages, of using either end-to-end or hybrid models. We also discuss the trade-offs between delivering accuracy or quality and the kind of runtime characteristics that you require as a service provider, in the context of engineering and delivering a service at the scale of Azure Speech. Finally, we walk through the data collection process for customizing a voice for TTS, what languages are currently supported, managing the responsibilities of threats like deep fakes, the future for services like these, and much more!The complete show notes for this episode can be found at twimlai.com/go/522.

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode