
Faster, Please! — The Podcast
Welcome to Faster, Please! — The Podcast. Several times a month, host Jim Pethokoukis will feature a lively conversation with a fascinating and provocative guest about how to make the world a better place by accelerating scientific discovery, technological innovation, and economic growth. fasterplease.substack.com
Latest episodes

Aug 9, 2024 • 24min
🤖🧠 My chat (+transcript) with Google DeepMind's Séb Krier on AGI and public policy
Séb Krier, an AI policy expert and attorney at Google DeepMind, discusses the inevitable rise of Artificial General Intelligence (AGI). He emphasizes the importance of developing thoughtful public policies to harness AGI's benefits while managing its risks. Krier highlights the need for a unified regulatory framework in the U.S. and explores AGI's implications for national security, likening it to historical projects like the Manhattan Project. He also shares insights on the practical applications of AI tools and how they can benefit everyday users.

Jul 19, 2024 • 23min
⤵ My chat (+transcript) with investor Ruchir Sharma on where capitalist economies went wrong
Investor Ruchir Sharma and host discuss the American addiction to 'pain management' in capitalism, the declining faith in capitalism among Americans, the role of government intervention, implications of populist policies, factors driving economic policy changes, and proposing economic solutions amidst political realities.

Jul 11, 2024 • 26min
⚛ My chat (+transcript) with the US Energy Department's Mike Goff on powering the US with more nuclear energy
✈ A quick note: I will be traveling through the middle of the month and will be posting a bit less than usual and perhaps a bit shorter than usual.After decades of resistance to nuclear power, growing concern over climate change, rising electricity needs, and a desire for greater energy independence are spurring renewed public interest in a future powered by atomic fission (perhaps fusion, too). Today on Faster, Please! — The Podcast, I talk to Dr. Mike Goff about the state of US nuclear power, the developing advancements in nuclear technology, and what it will take to reach our vast potential.Goff is the acting assistant secretary and the principal deputy assistant secretary for the Department of Energy’s Office of Nuclear Energy. He previously spent over 30 years at Idaho National Laboratory, including a major advisory and management role. He has written over 70 publications on the nuclear fuel cycle.In This Episode* Atomic Age 2.0 (1:31)* Major concerns (7:37)* Out of practice (11:04)* Next-generation policy (17:38)* Human capital (21:48)* Fusion forecast (23:12)Below is a lightly edited transcript of our conversationAtomic Age 2.0 (1:31)The Energy Secretary recently spoke about adding a lot more nuclear capacity, tripling it, I think, by 2050 or so. And before we get into whether that's possible, I wanted to ask you: As you understand it, what is the current consensus explanation for why the Nuclear and Atomic Age of the ’50s and ’60s, why that kind of ended? Because when the secretary spoke about building more capacity, I thought about the — and this is something maybe a lot of people are unaware of, that President Nixon had a plan to build a lot of more nuclear reactors in this country back in the ’70s during the oil crisis; that didn't happen, and we all know about Three Mile Island. But is there a consensus as to why Atomic Age 1.0 came to an end? Obviously we still get a lot of energy from nuclear, but not what people had imagined 40 years ago.There are a variety of reasons. We did build a lot at one point, and we were building 10 plants a year, pretty extensive builds out there. We did then have Three Mile Island in the late ’70s, and then we got costs started going up, and schedules started increasing on the builds, and we ended up not having a lot of energy growth, in fact, we went for a long period where we weren't having a lot of energy growth, and we had a lot of other energy sources, natural gas, coal, and all. We had a lot of other energy sources out there as well. So yeah, we became pretty stagnated around 20 percent of the electricity. But now, like you say, yeah, there's been a big change in what we think the needs are for nuclear going forward, for a variety of reasons.My background is journalism, and as a journalist I’ve written, I know, multiple stories in my life about a Nuclear Renaissance. So I'm wondering why this time looks to be different. You suggested in your previous answer that there might be some reasons. What are those reasons that we may be entering a new age where we will see an expansion in the nuclear sector?I do think we will see that expansion, and, in fact, I think we have to see that expansion, and it's because of a lot of the positive attributes of nuclear right now. Obviously there's a lot of focus on trying to get more clean energy out there, and nuclear is a large base load source of clean energy. And it's not just CO2 emission, but it doesn't emit particulates and all, as well, so it's good air, good quality of life. So it has those key attributes. But there are other clean energy sources as well: renewables, hydro, and all that. But I think the recognition that, if you are going to go toward decarbonization, you need still base load electricity too. You need base load electricity to help intermittent sources like renewables to be able to expand more as well. So nuclear is very good at enabling decarbonization, not just by adding clean electricity to the grid, but enabling you to expand out other renewables like wind and solar and all, as well.Additionally, nuclear is very reliable. Of the energy sources, it has the highest capacity factor of any of the energy sources. In the United States, we run 93 percent of the time, so the existing fleet that we have out there of 94 plants, they're producing a 100 percent of the power 93 percent of the time, which dwarfs what any other energy source does out there as well.Nuclear is safe. At times people are concerned about safety, but, in reality, it's actually one of the safest energy sources out there and continues to demonstrate that.It's resilient for different weather-related events. It can still produce electricity out there as well. It also has a lot of energy security. And as we've learned, unfortunately, from Russia's unprovoked and unjustified invasion of Ukraine, we recognize energy security is national security, so nuclear really does help us on that national security front. It provides an energy source that we can largely on-source from us and our allies. We’ve got assured fuel supplies, and provides that long-term power. You can put fuel in it and it can last for two years or so.And I guess one other thing I'll add out there as well, is it's a job creator. Of the different energy sources, the amount of jobs associated with nuclear are some of the highest on the amount of electricity produced. And when you actually start building nuclear, like we saw in Vogtle in Georgia where they were building the two plants, it creates huge amounts of jobs. In fact, I heard a stat recently that 35,000 union workers were trained as part of the construction of the Vogtle power plant, so it's a good job creator in all, as well. And again, the power density is great, it doesn't take up a lot of space, and with the advanced technologies that we've developed in the United States, you've continued to increase in the safety, you can have plants of a variety of different sizes that can be easily deployed to, say, retiring coal plants. It just has a lot of flexibility that it hasn't had in the past, but also it's that key recognition of its clean energy attributes, but its energy security attributes as well.Major concerns (7:37)I did not major in nuclear science, I majored in history and political science, but I remember I took a class as an undergraduate at Northwestern University on the nuclear fuel cycle, and I remember to this day that my professor — of course, this was obviously a while ago, and I think what most of the students knew about nuclear energy was probably Three Mile Island — and I remember to this day distinctly the professor saying, “If they wanted to build a nuclear reactor in my backyard, I would be totally fine with it.” He had zero fear on the safety issue. Now when you give that rap that you just gave me about the wonders of nuclear energy before regular people, what is their response? Do they worry about the nuclear waste? Do they worry about safety? Are they immediately sold, or what are the concerns that typically get raised to you?You brought them up. I mean, safety is brought up because you do see these high profile accidents like Three Mile Island, Chernobyl, Fukushima, which were accidents. They weren't good things that you want to have happen, but the industry's also a very learning industry. The improvements that come out of those events have just made the industry even safer and safer. And again, it's still safer than most any other electricity-producing industry out there as well.Waste does get brought up. We have not implemented a final disposal solution for the spent fuel from our reactors, but we have safely stored and managed the spent fuel over the last six decades, and the amount of fuel that's generated, I think the stat that gets tossed around, you could fit it all in a Walmart parking lot. This is not a lot of material because it's a high energy-density fuel. It's not a lot of material, and again, we safely manage that and store that. We have countries now that are moving forward with geological repositories, which we need to be doing in the United States. In fact, just last week, I went and visited the repository that hopefully will be operating next year in Finland for disposing of their spent fuel. We can do that, it’s not a technical issue, so we can safely manage the spent fuel.The other issue that always comes up is still cost. We do have to demonstrate now that we can build these plants safely, and efficiently, and at a reasonable cost. On the Vogtle plant there were cost overruns and schedule overruns, but between Vogtle Unit 3 and Unit 4, there was about a 30 percent reduction in costs between those plants, so we are starting to get to where we can be deploying nth-of-a-kind cost plants out there as well. And hopefully with some of the small modular reactor designs and all that are going to rely more on modular construction, we can even get to nth-of-a-kind cost even quicker. It still takes some pushing and understanding to make sure that people do understand the advancements that have been made on nuclear technology, that it's not our parents' nuclear technology, there's a new round of technology out there.Out of practice (11:04)You raised two good points there. The cost issue, and that's a great stat about the Vogtle plant and the reduction between the two reactors. Is it your sense that the fact that we haven't been consistently building reactors and learning from the previous build, and having trained people who've worked on multiple reactors, that each one has become like this bespoke mega project? It’s my sense, and it seems logical, at least to me, that that has been a cost driver, that we haven't been able to churn these out like 10 a year, every year, decade after decade, because clearly, if that was the case, I don't see how we don't learn how to build them better, faster, and more efficiently. But that's not what we've been doing, obviously.That's right. It's not. Even when I say with Vogtle, you had to stand back up the whole supply chain, you had to retrain the workforce, so there was a lot of learning in that process, even though, too, we did recognize on that plant you need to have designs very well finalized and standardized as well. One of the problems we realized from the buildout of the 90-something plants that we have now is no two plants were ever that similar. Everyone wanted to make a tweak in their plant, so we never got to where we had standardized designs. So I think now that we're getting that trained workforce, getting the supply chain up there, and our vendors are really saying, “We're doing standardized plants. If someone else wants to make a tweak on this plant, they have to go somewhere else,” that people are going to go with standardized designs so we can really replicate these and get that cost benefit from it. The challenges that you brought up, we have to overcome, and I think we're set up now to be able to overcome that. I appreciate all the effort that went into building Units 3 and 4 at Vogtle. We've got enough benefit from that learning there and hopefully build very soon here.There's a world where we have tripled our nuclear generating capacity, as Secretary Granholm said. Can that be a world where we get all our nuclear power from light water nuclear reactors, or must there be different kinds of reactors? You mentioned the small modular reactors, and I've interviewed startups doing microreactors, I don't know, maybe they'll be used to power data centers, but can that world of greatly increased nuclear generation, even with improvements in light water reactors, must there be different kinds of reactors?I wouldn't say “must.” I think there will be. I think we will have that variability. I think we will still have large plants being built. I think maybe five years ago you wouldn't hear that people were talking about building gigawatt-sizes plants again. I think we'll have the gigawatt-size plants, we'll have the small modular reactors that are water-cooled, but I think we will get some of those advanced reactors out there: the Generation IV reactors, the sodium-cooled fast reactors that have the capacity to be able to burn waste better and also increase the sustainability of the amount of fuel they use. I think you’ll also have the high-temperature gas reactors that are helium-cooled, that use TRISO fuel. You'll have those because we need to not only decarbonize the electricity sector, we've got to decarbonize the industrial sector. That's much more challenging, and the high temperatures that can be provided from those reactors will help us in that decarbonization process. So I think we will have a mixture out there. There are cases where the Gen IV systems are going to be better than the gigawatt-sized plants for the needs that are out there, but large power plants are going to be needed as well. Especially, like you say, you bring up the data centers, the amount of growth that we're hearing for electricity right now, I think again, we'll see gigawatt-sized plants will be needed to be able to meet that growth.Yeah, I tell you, nothing frustrates me more than reading about what AI could perhaps do for our economy and then having people say, “Well, but we know we can't do it because we can't supply the power” or “We can't supply enough clean power,” I mean, well then it’d be sure great to have more nuclear energy. And I wonder, as you sort of tick off some of the potential advances and new kinds of reactors, maybe I look backward too much, but I can't help but wonder what nuclear reactors would be like today, where we would be today, maybe we would already have fusion reactors had we proceeded with this kind of momentum every decade since 1980. It drives me crazy, and you're a nuclear engineer, that must drive you crazy.It does, I've been doing this . . . my first job in the nuclear industry was almost 40 years ago when I was still in college, and there have definitely been ups and downs in funding. In fact, there were some periods where there was almost zero research and development dollars spent in the government on nuclear energy. Luckily, though, the thing that we have is, under the four presidential administrations, there's been a real steady climb in the recognition of the importance of nuclear, and the funding to support it. So I'm happy that we have had this period that goes back to the early 2000s that's been really steady growth in recognition of nuclear. If we would've not had some of those laws in the late ’80s and ’90s, yeah, we could probably be further ahead, especially on some of the advanced technologies. Because yes, some of those advanced technologies started on research that was back in the ’50s, ’60s and ’70s: the sodium-cooled fast reactor, the molten salt reactor, all of those were based on R&D that we did back in the early days, as well.Next-generation policy (17:38)Which leads me to this question: You work for the government. I work for a public policy think tank, so of course I'm going to think about: Given where we are today, what government needs to do going forward, both on the R&D front and on the regulatory front, are we doing enough basic research for whatever the next, or the next next generation of nuclear is, and do we now have the kind regulatory framework we need for that next generation of reactors?I'll go to the research one first—and I should note, my background is, I'm an R&D person, I came out of the national labs, so of course we always need more research and development. But that said, we have been blessed by funding from Congress and the administration that there's a significant amount of money for research and development in the United States. And I'll say that's good, because the one thing I will note, I do believe innovation in the US, as far as the nuclear technology, we are the best. The technologies that we're developing and our vendors are deploying it, really, it is the cutting edge technology, so it's good we have that R&D, and it's important, as you know, we need to continue to have it to move forward on that next generation of technologies and continue to make improvements on the technologies out there. So I think we have a good research base.There's some infrastructure that we still need if we start deploying, say, when we mentioned that sodium-cooled fast reactor, we don't have a testing capability for that type of system. We shut down our last testing system on a fast reactor in 1994. We would probably need some additional infrastructure. But again, we have a pretty good base. And I'll say that also on the regulatory side. We do have a pretty good base as well. The Nuclear Regulatory Commission is obviously focused on light water reactors throughout its history, but they've actually been doing a good job at being able to work with some of the developers. We have three entities out there that are working on Generation IV reactors. TerraPower did submit their construction authorization to the Nuclear Regulatory Commission, and they've accepted it, so they're working well with them, even though they have a water-based system. Hopefully X-energy, who's doing a high-temperature gas reactor, working with the government and all, as well, will be moving forward, as well. And we've had a third that's working in the molten salt space, a molten salt-cooled reactor that has already received a construction permit to go forward on a prototype reactor, a Kairos company.I'm sure there's got to be reforms still on the Nuclear Regulatory Commission and make sure that we are timely and responding to license applications, but they are moving in the right direction. There's been a lot of interface with various laws, whether it's the NEICA (Nuclear Energy Innovation Capabilities Act), or NEIMA (Nuclear Energy Innovation and Modernization Act), two bills that were passed a little while back looking at reforming. And I think there still needs to be improvements and still need to be increase in the resource and capacity of the Nuclear Regulatory Commission, but they're heading in the right direction.We have a good regulator, and that's one of the things that helps us make sure we feel that we can deploy this technology safely here, but also helps us in exporting our technology, where we can say, “Our technology has been licensed by the Nuclear Regulatory Commission,” which has such a high view externally in other countries, that helps us. So I want them to continue to be that safe regulator, but again, they are continuing to work to improve and streamline the process. Hopefully we get toward where we're standardizing, that we don't have to have a lot of interface and we don't — that'll come to the utilities, too — we don't make changes once we've got something approved, so we hopefully can speed up the process from the utility side, and all is well.Human capital (21:48)Are we going to turn out enough nuclear engineers? I imagine that, for a while, that probably seemed like a hard sell to someone who had an interest in science and engineering, to be in this industry versus some others. Probably a little easier sell; are we going to have enough people going into that to build all these reactors?We are going to need to continue to increase it. We’re already seeing the uptick, though, in that area. I'll note: Our office, the office of Nuclear Energy, we've really — going back to the 2010 timeframe — really recognized that we needed to do more in that area, so we actually started investing almost 20 percent of our R&D budget to the universities to hopefully foster that next generation. And in fact, this year we just hit the mark where we've now spent $1 billion since the start of those programs on the universities to make sure we're doing R&D there and getting that next generation of folks out there. It’s something that we've got to continue to focus on to make sure that we do. Because yeah, if we triple, it's going to need a lot more nuclear engineers. But I also note, the thing I'm concerned about also is making sure we have the right trades and all, as well. If we're building these plants, making sure you have the welders, the pipe fitters, and all, that's going to be a big challenge, as well, especially if we're going to start building, say, 10 plants a year. That's a lot of people out there.Fusion forecast (23:12)I’m excited about the prospects for nuclear fusion, and I've talked to people at startups, and it has probably looked as promising as it ever has. How promising is it? How should I think about it as being part of our energy solution going forward, given where we're at? In fact, there are no commercial nuclear fusion reactors right now. Obviously people at startups give a lot of optimistic forecasts. How should I even think about that as being a partial solution in the coming decades? How do you look at it, at least?I think it can be part of the solution in the coming decades. I think some of the changes that's taken place, especially over the last two years where there is more of a change to focus on, not fusion as a science program, but fusion as deployment, as an energy producer, you look at it as an applied energy. I think that's an important change that's occurred over the last two years, and the fusion programs within the Department of Energy are much more focused to that. It's similar to what's happened somewhat with fission. Fission, about 15 years ago, it was government-driven, and you pull along industry, until about 15 years ago you started having industry investing a lot of money and pulling along the government. You're now starting to see that happen in fusion, where people are doing a lot of a private investment, they're pulling along the government, and the government's working to see, how can we use the resources of the government to enable it? So I think it will happen. I don't think fusion is going to be producing electricity to the grid this decade, but I think the vision that's been put forth by the government is their bold, decade-old vision to have a fusion pilot facility sometime within the decade. I think that is feasible. So maybe before the 2050s you can start having fusion generating some of our electricity. I'm a fission person at my heart, but I think fusion is, we're getting much more focused on moving it forward as an electricity source, and that'll help it be able to be deployed sometime here in our lifetime.Faster, Please! is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber.Micro ReadsHow Elon Musk and SpaceX Plan to Colonize Mars - NYTWhat happened to the artificial-intelligence revolution? - Economist The EV trade war between China and the West heats up - Economist Defeated by A.I., a Legend in the Board Game Go Warns: Get Ready for What’s Next - NYTPfizer pins hopes on daily pill to crack market for weight-loss drugs - FTRise of the Restaurant Robots: Chipotle, Sweetgreen and Others Bet on Automation - WSJSaudi Arabia's Trillion-Dollar Makeover Faces Funding Cutbacks - BbergAI Spending: Goldman Strategists Say Big Tech’s Splurge Worries Investors - BbergIt’s Time for AI to Start Making Money for Businesses. Can It? - WSJFaster, Please! is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber. This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe

Jun 28, 2024 • 32min
🤖 My chat (+transcript) with Google economist Guy Ben-Ishai on seizing the historic AI moment
Head of economic policy research at Google, Guy Ben-Ishai discusses the potential impact of generative AI on the economy, workforce transition strategies, employer resource allocation, and the US's role in AI leadership. Topics include AI as a general purpose technology, risks and benefits, barriers to adoption, investing in employees, and AI complementing human capabilities.

Jun 14, 2024 • 30min
🏙 My chat (+transcript) with ... economist Jason Barr on the skyscrapers of tomorrow
Economist Jason Barr discusses the demand, future, and impact of skyscrapers in developing countries. Topics include the end of skyscrapers, their role in commerce, trends in Manhattan, and the evolution of skyscraper designs.

Jun 6, 2024 • 30min
🤖🌈 My chat (+transcript) with Nick Bostrom on life in an AI utopia
Nick Bostrom explores the concept of an AI utopia in a post-work world. They discuss the balance between dystopian and utopian visions, potential risks, and the impact of advanced technology on society. The podcast challenges the prevailing negative outlook on the future and considers the implications of living in a 'solved world' driven by AI.

42 snips
May 30, 2024 • 26min
🤖 My chat (+transcript) with tech policy analyst Adam Thierer on regulating AI
Adam Thierer, a senior fellow at the R Street Institute, discusses the current state of AI policy, global AI race, regulatory risks, and AI policy under Trump with a focus on the shifting approach towards balanced regulation and bipartisan AI working group recommendations. The podcast explores geopolitics in AI policy, challenges in regulating AI, and the Trump administration's approach to AI regulation.

May 3, 2024 • 27min
🚀 My chat (+transcript) with Charles Murray on Project Apollo
Project Apollo was a feat of human achievement akin to, and arguably greater than, the discovery of the New World. From 1962 to 1972, NASA conducted 17 crewed missions, six of which placed men on the surface of the moon. Since the Nixon administration put an end to Project Apollo, our extraterrestrial ambitions seem to have stalled along with our sense of national optimism. But is the American spirit of adventure, heroism, and willingness to take extraordinary risk a thing of the pastToday on the podcast, I talk with Charles Murray about what made Apollo extraordinary and whether we in the 21st century have the will to do extraordinary things. Murray is the co-author with Catherine Bly Cox of Apollo: The Race to the Moon, first published in 1989 and republished in 2004. He is also my colleague here at AEI.In This Episode* Going to the moon (1:35)* Support for the program (7:40)* Gene Kranz (9:31)* An Apollo 12 story (12:06)* An Apollo 11 story (17:58)* Apollo in the media (21:36)* Perspectives on space flight (24:50)Below is a lightly edited transcript of our conversationGoing to the moon (1:35)Pethokoukis: When I look at the delays with the new NASA go-to-the-moon rocket, and even if you look at the history of SpaceX and their current Starship project, these are not easy machines for mankind to build. And it seems to me that, going back to the 1960s, Apollo must have been at absolutely the far frontier of what humanity was capable of back then, and sometimes I cannot almost believe it worked. Were the Apollo people—the engineers—were they surprised it worked?Murray: There were a lot of people who, they first heard the Kennedy speech saying, “We want to go to the moon and bring a man safely back by the end of the decade,” they were aghast. I mean, come on! In 1961, when Kennedy made that speech, we had a grand total of 15 minutes of manned space flight under our belt with a red stone rocket with 78,000 pounds of thrust. Eight years and eight weeks later, about the same amount of time since Donald Trump was elected to now, we had landed on the moon with a rocket that had 7.6 million pounds of thrust, compared to the 78,000, and using technology that had had to be invented essentially from scratch, all in eight years. All of Cape Canaveral, those huge buildings down there, all that goes up during that time.Well, I'm not going to go through the whole list of things, but if you want to realize how incredibly hard to believe it is now that we did it, consider the computer system that we used to go to the moon. Jerry Bostick, who was one of the flight dynamics officers, was telling me a few months ago about how excited they were just before the first landing when they got an upgrade to their computer system for the whole Houston Center. It had one megabyte of memory, and this was, to them, all the memory they could ever possibly want. One megabyte.We'll never use it all! We'll never use all this, it’s a luxury!So Jim, I guess I'm saying a couple of things. One is, to the young’ins out there today, you have no idea what we used to be able to do. We used to be able to work miracles, and it was those guys who did it.Was the Kennedy speech, was it at Rice University?No, “go to the moon” was before Congress.He gave another speech at Rice where he was started to list all the things that they needed to do to get to the moon. And it wasn't just, “We have these rockets and we need to make a bigger one,” but there was so many technologies that needed to be developed over the course of the decade, I can't help but think a president today saying, “We're going to do this and we have a laundry list of things we don't know how to do, but we're going to figure them out…” It would've been called pie-in-the-sky, or something like that.By the way, in order to do this, we did things which today would be unthinkable. You would have contracts for important equipment; the whole cycle for the contract acquisition process would be a matter of weeks. The request for proposals would go out; six weeks later, they would've gotten the proposals in, they would've made a decision, and they'd be spending the money on what they were going to do. That kind of thing doesn't get done.But I'll tell you though, the ballsiest thing that happened in the program, among the people on the ground — I mean the ballsiest thing of all was getting on top of that rocket and being blasted into space — but on the ground it was called the “all up” decision. “All up” refers to the testing of the Saturn V, the launch vehicle, this monstrous thing, which basically is standing a Navy destroyer on end and blasting it into space. And usually, historically, when you test those things, you test Stage One, and if that works, then you add the second stage and then you add the third stage. And the man who was running the Apollo program at that time, a guy named Miller, made the decision they were going to do All Up on the first test. They were going to have all three stages, and they were going to go with it, and it worked, which nobody believed was possible. And then after only a few more launches, they put a man on that thing and it went. Decisions were made during that program that were like wartime decisions in terms of the risk that people were willing to take.One thing that surprises me is just how much that Kennedy timeline seemed to drive things. Apollo seven, I think it was October ’68, and that was the first manned flight? And then like two months later, Apollo 8, we are whipping those guys around the moon! That seems like a rather accelerated timeline to me!The decision to go to the moon on Apollo 8 was very scary to the people who first heard about it. And, by the way, if they'd had the same problem on Apollo 8 that they'd had on Apollo 13, the astronauts would've died, because on Apollo 8 you did not have the lunar module with them, which is how they got back. So they pulled it off, but it was genuinely, authentically risky. But, on the other hand, if they wanted to get to the moon by the end of 1969, that's the kind of chance you had to take.Support for the Program (7:40)How enthusiastic was the public that the program could have withstood another accident? Another accident before 11 that would've cost lives, or even been as scary as Apollo 13 — would we have said, let's not do it, or we're rushing this too much? I think about that a lot now because we talk about this new space age, I'm wondering how people today would react.In January, 1967, three astronauts were killed on the pad at Cape Canaveral when the spacecraft burned up on the ground. And the support for the program continued. But what's astonishing there is that they were flying again with manned vehicles in September 1967. . . No, it was a year and 10 months, basically, between this fire, this devastating fire, a complete redesign of the spacecraft, and they got up again.I think that it's fair to say that, through Apollo 11, the public was enthusiastic about the program. It's amazingly how quickly the interest fell off after the successful landing; so that by the time Apollo 13 was launched, the news programs were no longer covering it very carefully, until the accident occurred. And by the time of Apollo 16, 17, everybody was bored with the program.Speaking of Apollo 13, to what extent did that play a role in Nixon's decision to basically end the Apollo program, to cut its budget, to treat it like it was another program, ultimately, which led to its end? Did that affect Nixon's decision making, that close call, do you think?No. The public support for the program had waned, political support had waned. The Apollo 13 story energized people for a while in terms of interest, but it didn't play a role. Gene Kranz (9:31)500 years after Columbus discovering the New World, we talk about Columbus. And I would think that 500 years from now, we'll talk about Neil Armstrong. But will we also talk about Gene Kranz? Who is Gene Kranz and why should we talk about him 500 years from now?Gene Kranz, also known as General Savage within NASA, was a flight director and he was the man who was on the flight director's console when the accident on 13 occurred, by the way. But his main claim to fame is that he was one of — well, he was also on the flight director's desk when we landed. And what you have to understand, Jim, is the astronauts did not run these missions. I'm not dissing the astronauts, but all of the decisions . . . they couldn't make those decisions because they didn't have the information to make the decisions. These life-and-death decisions had to be made on the ground, and the flight director was the autocrat of the mission control, and not just the autocrat in terms of his power, he was also the guy who was going to get stuck with all the responsibility if there was a mistake. If they made a mistake that killed the astronauts, that flight director could count on testifying before Congressional committees and going down in history as an idiot.Somebody like Gene Kranz, and the other flight director, Glynn Lunney during that era, who was also on the controls during the Apollo 13 problems, they were in their mid-thirties, and they were running the show for one of the historic events in human civilization. They deserve to be remembered, and they have a chance to be, because I have written one thing in my life that people will still be reading 500 years from now — not very many people, but some will — and that's the book about Apollo that Catherine, my wife, and I wrote. And the reason I'm absolutely confident that they're going to be reading about it is because — historians, anyway, historians will — because of what you just said. There are wars that get forgotten, there are all sorts of events that get forgotten, but we remember the Trojan War, we remember Hastings, we remember Columbus discovering America. . . We will remember for a thousand years to come, let alone 500, the century in which we first left Earth. An Apollo 12 story (12:06)If you just give me a story or two that you'd like to tell about Apollo that maybe the average person may have never heard of, but you find . . . I'm sure there's a hundred of these. Is there one or two that you think the audience might find interesting?The only thing is it gets a little bit nerdy, but a lot about Apollo gets nerdy. On Apollo 12, the second mission, the launch vehicle lifts off and into the launch phase, about a minute in, it gets hit by lightning — twice. Huge bolts of lightning run through the entire spacecraft. This is not something it was designed for. And so they get up to orbit. All of the alarms are going off at once inside the cabin of the spacecraft. Nobody has the least idea what's happened because they don't know that they got hit by lightning, all they know is nothing is working.A man named John Aaron is sitting in the control room at the EECOM’s desk, which is the acronym for the systems guide who monitored all the systems, including electrical systems, and he's looking at his console and he's seeing a weird pattern of numbers that makes no sense at all, and then he remembers 15 months earlier, he'd just been watching the monitor during a test at Cape Canaveral, he wasn't even supposed to be following this launch test, he was just doing it to keep his hand in, and so forth, and something happened whereby there was a strange pattern of numbers that appeared on John Aaron's screen then. And so he called Cape Canaveral and said, what happened? Because I've never seen that before. And finally the Cape admitted that somebody had accidentally turned a switch called the SCE switch off.Okay, so here is John Aaron. Apollo 12 has gone completely haywire. The spacecraft is not under the control of the astronauts, they don't know what's happened. Everybody's trying to figure out what to do.John Aaron remembers . . . I'm starting to get choked up just because that he could do that at a moment of such incredible stress. And he just says to the flight director, “Try turning SCE to auxiliary.” And the flight director had never even heard of SCE, but he just . . . Trust made that whole system run. He passes that on to the crew. The crew turns that switch, and, all at once, they get interpretable data back again.That's the first part of the story. That was an absolutely heroic call of extraordinary ability for him to do that. The second thing that happens at that point is they have completely lost their guidance platform, so they have to get that backup from scratch, and they've also had this gigantic volts of electricity that's run through every system in the spacecraft and they have three orbits of the earth before they have to have what was called trans lunar injection: go onto the moon. That's a couple of hours’ worth.Well, what is the safe thing to do? The safe thing to do is: “This is not the right time to go to the moon with a spacecraft that's been damaged this way.” These guys at mission control run through a whole series of checks that they're sort of making up on the fly because they've never encountered this situation before, and everything seems to check out. And so, at the end of a couple of orbits, they just say, “We're going to go to the moon.” And the flight director can make that decision. Catherine and I spent a lot of time trying to track down the anguished calls going back and forth from Washington to Houston, and by the higher ups, “Should we do this?” There were none. The flight director said, “We're going,” and they went. To me, that is an example of a kind of spirit of adventure, for lack of a better word, that was extraordinary. Decisions made by guys in their thirties that were just accepted as, “This is what we're going to do.”By the way, Gene Kranz, I was interviewing him for the book, and I was raising this story with him. (This will conclude my monologue.) I was raising this story with him and I was saying, “Just extraordinary that you could make that decision.” And he said, “No, not really. We checked it out. The spacecraft looked like it was good.” This was only a year or two after the Challenger disaster that I was conducting this interview. And I said to Gene, “Gene, if we had a similar kind of thing happen today, would NASA ever permit that decision to be made?” And Gene glared at me. And believe me, when Gene Kranz glares at you, you quail at your seat. And then he broke into laughter because there was not a chance in hell that the NASA of 1988 would do what the NASA of 1969 did.An Apollo 11 story (17:58)If all you know about Apollo 11 is what you learned in high school, or maybe you saw a documentary somewhere, and — just because I've heard you speak before, and I've heard Gene Kranz speak—what don't people know about Apollo 11? There were — I imagine with all these flights — a lot of decisions that needed to be made probably with not a lot of time, encountering new situations — after all, no one had done this before. Whereas, I think if you just watch a news report, you think that once the rocket's up in the air, the next thing that happens is Neil Armstrong lands it on the moon and everyone's just kind of on cruise control for the next couple of days, and boy, it certainly doesn't seem like that.For those of us who were listening to the landing, and I'm old enough to have done that, there was a little thing called—because you could listen to the last few minutes, you could listen to what was going on between the spacecraft and mission control, and you hear Buzz Aldrin say, “Program Alarm 1301 . . . Program Alarm 1301 . . .” and you can't… well, you can reconstruct it later, and there's about a seven-second delay between him saying that and a voice saying, “We're a go on that.” That seven seconds, you had a person in the back room that was supporting, who then informed this 26-year-old flight controller that they had looked at that possibility and they could still land despite it. The 26-year-old had to trust the guy in the back room because the 26-year-old didn't know, himself, that that was the case. He trusts him, he tells the flight director Gene Kranz, and they say, “Go.” Again: Decision made in seven seconds. Life and death. Taking a risk instead of taking the safe way out.Sometimes I think that that risk-taking ethos didn't end with Apollo, but maybe, in some ways, it hasn't been as strong since. Is there a scenario where we fly those canceled Apollo flights that we never flew, and then, I know there were other plans of what to do after Apollo, which we didn't do. Is there a scenario where the space race doesn't end, we keep racing? Even if we're only really racing against ourselves.I mean we've got . . . it's Artemis, right? That's the new launch vehicle that we're going to go back to the moon in, and there are these plans that somehow seem to never get done at the time they're supposed to get done, but I imagine we will have some similar kind of flights going on. It's very hard to see a sustained effort at this point. It's very hard to see grandiose effort at this point. The argument of, “Why are we spending all this money on manned space flight?” in one sense, I sympathize with because it is true that most of the things we do could be done by instruments, could be done by drones, we don't actually have to be there. On the other hand, unless we're willing to spread our wings and raise our aspirations again, we're just going to be stuck for a long time without making much more progress. So I guess what I'm edging around to is, in this era, in this ethos, I don't see much happening done by the government. The Elon Musks of the world may get us to places that the government wouldn't ever go. That's my most realistic hope.Apollo in the Media (21:36)If I could just give you a couple of films about the space program and you just… thought you liked it, you thought it captured something, or you thought it was way off, just let just shoot a couple at you. The obvious one is The Right Stuff—based on the Tom Wolfe book, of course.The Right Stuff was very accurate about the astronauts’ mentality. It was very inaccurate about the relationship between the engineers and the astronauts. It presents the engineers as constantly getting the astronauts way, and being kind of doofuses. That was unfair. But if you want to understand how the astronauts worked, great movieApollo 13, perhaps the most well-known.Extremely accurate. Extremely accurate portrayal of the events. There are certain things I wish they could include, but it's just a movie, so they couldn't include everything. The only real inaccuracy that bothered me was it showed the consoles of the flight controllers with colored graphics on them. They didn't have colored graphics during Apollo! They had columns of white numbers on a black background that were just kind of scrolling through and changing all the time, and that's all. But apparently, when their technical advisor pointed that out to Ron Howard, Ron said, “There are some things that an audience just won't accept, but they would not accept.”That was the leap! First Man with Ryan Gosling portraying Neil Armstrong.I'll tell you: First place, good movie—Excellent, I think.Yeah, and the people who knew Armstrong say to me, it's pretty good at capturing Armstrong, who himself was a very impressive guy. This conceit in the movie that he has this little trinket he drops on the moon, that was completely made up and it's not true to life. But I'll tell you what they tell me was true to life that surprised me was how violently they were shaken up during the launch phase. And I said, “Is that the way it was, routinely?” And they said, yeah, it was a very rough ride that those guys had. And the movie does an excellent job of conveying something that somebody who'd spent a lot of time studying the Apollo program didn't know.I don't know if you've seen the Apple series For All Mankind by Ronald D. Moore, which is based on the premise I raised earlier that Apollo didn’t end, we just kept up the Space Race and we kept advancing off to building moon colonies and off to Mars. Have you seen that? And what do you think about it if you have? I don't know that you have.I did not watch it. I have a problem with a lot of these things because I have my own image of the Apollo Program, and it drives me nuts if somebody does something that is egregiously wrong. I went to see Apollo 13 and I'm glad I did it because it was so accurate, but I probably should look at For All Mankind.Very reverential. A very pro-space show, to be sure. Have you seen the Apollo 11 documentary that's come out in the past five years? It was on the big screen, it was at theaters, it was a lot of footage they had people had not seen before, they found some old canisters somewhere of film. I don’t know if you've seen this. I think it's just called Apollo 11.No, I haven't seen that. That sounds like something that I ought to look at.Perspectives on space flight (24:50)My listeners love when I read . . . Because you mentioned the idea of: Why do we go to space? If it's merely about exploration, I suppose we could just send robots and maybe eventually the robots will get better. So I want to just briefly read two different views of why we go to space.Why should human beings explore space? Because space offers transcendence from which only human beings can benefit. The James Webb Space Telescope cannot articulate awe. A robot cannot go into the deep and come back with soulful renewal. To fully appreciate space, we need people to go there and embrace it for what it fully is. Space is not merely for humans, nor is space merely for space. Space is for divine communion.That’s one view.The second one is from Ayn Rand, who attended the Apollo 11 moon launch. This is what Ayn Rand wrote in 1969:The next four days were torn out of the world’s usual context, like a breathing spell with a sweep of clean air piercing mankind’s lethargic suffocation. For thirty years or longer, the newspapers had featured nothing but disasters, catastrophes, betrayals, the shrinking stature of man, the sordid mess of a collapsing civilization; their voice had become a long, sustained whine, the megaphone a failure, like the sound of the Oriental bazaar where leprous beggars, of spirit or matter, compete for attention by displaying their sores. Now, for once, the newspapers were announcing a human achievement, were reporting on a human triumph, were reminding us that man still exists and functions as a man. Those four days conveyed the sense that we were watching a magnificent work of art—a play dramatizing a single theme: the efficacy of man’s mind.Is the answer for why we go to space, can it be found in either of those readings?They're going to be found in both. I am a sucker for heroism, whether it's in war or in any other arena, and space offers a kind of celebration of the human spirit that is only found in endeavors that involve both great effort and also great risk. And the other aspect of transcendence, I'm also a sucker for saying the world is not only more complicated than we know, but more complicated than we can imagine. The universe is more complicated than we can imagine. And I resonate to the sentiment in the first quote.Faster, Please! is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber. This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe

6 snips
Apr 19, 2024 • 25min
🦁 My chat (+transcript) with investment strategist Ed Yardeni on his optimism for a Roaring 2020s
Investment strategist Ed Yardeni discusses his optimism for a Roaring 2020s, reflecting on the '90s Internet boom and obstacles to progress. He explores the potential impact of sustained productivity growth post-pandemic, globalization challenges, and the shift towards automation in manufacturing. Yardeni also delves into the relationship between productivity growth, compensation, and the economy's future landscape, highlighting the Federal Reserve's cautious approach.

Apr 11, 2024 • 15min
⚡⚛ My chat (+transcript) with Steve Obenschain of LaserFusionX on laser fusion
As private and government interest in nuclear fusion technology grows, an array of startups have arisen to take on the challenge, each with their own unique approach. Among them: LaserFusionX. Today on Faster, Please!—The Podcast, I talk with CEO Stephen Obenschain about the viability of fusion energy, and what sets his approach apart.Obenschain is the president of LaserFusionX. He was formerly head of the Plasma Physics Division branch at the U.S. Naval Research Laboratory.In This Episode* Viability of commercial fusion (0:58)* The LaserFusionX approach (7:54)* Funding the project (10:28)* The vision (12:52)Below is a lightly edited transcript of our conversationViability of commercial fusion (0:58)Pethokoukis: Steve, welcome to the podcast.Obenschain: Okay, I'm glad to talk with you. I understand you're very interested in high-tech future power sources, not so high tech right now are windmills…Well, I guess they're trying to make those more high tech, as well. I recall that when the Energy Department, the National Ignition Laboratory [NIF], they had the—I guess that's over about maybe 15 months ago—and they said they had achieved a net gain nuclear fusion, using lasers, and the energy secretary made an announcement and it was a big deal because we had never done that before by any means. But I remember very specifically people were saying, “Listen, it's a great achievement that we've done this, but using lasers is not a path to creating a commercial nuclear reactor.” I remember that seemed to be on the news all the time. But yet you are running a company that wants to use lasers to create a commercial fusion reactor. One, did I get that right, and what are you doing to get lasers to be able to do that?I don't know why people would come to that conclusion. I think we are competitive with the other approaches, which is magnetic fusion, where you use magnetic fields to confine a plasma and get to fusion temperatures. The federal government has supported laser fusion since about 1972, starting with the AEC [Atomic Energy Commission]. Originally it was an energy program, but it has migrated to being in support stockpiled stewardship because, with laser fusion, you can reach physics parameters similar to what occur in thermonuclear weapons.Yeah. So that facility is about nuclear weapons testing research, not creating a reactor—a fusion reactor.Yeah. All that being said, it does advance the physics of laser fusion energy, and what the National Ignition Facility did is got so-called ignition, where the fuel started a self-sustaining reaction where it was heating itself and increasing the amount of fusion energy. However, the gain was about three, and one of the reasons for that is they use so-called indirect drive, where the laser comes in, heats a small gold can, and the X-rays from that then that drive the pellet implosion, which means you lose about a factor of five in the efficiency. So it's limited gain you get that way.Your way is different. It sort of cuts out the middleman.Okay. The better way to go—which, we're not the only ones to do this—is direct drive, where the laser uniformly illuminates the target at the time that Livermore got started with indirect drive, we didn't have the technologies to uniformly illuminate a pellet. First at NRL [Naval Research Laboratories], and then later at University of Rochester in Japan, they developed techniques to uniformly illuminate the pellets. The second thing we're doing is using the argon fluoride laser. The argon fluoride laser has been used in lithography for many years because it's deep UV.The unique thing we have been trying to do—this was when I was supervising the program at the Naval Research Laboratory—was to take it up to high energy. We started years ago with a similar Krypton fluoride laser, built the largest operating target shooter with that technology, demonstrated the high repetition rate operation that you need for energy and NIF will shoot a few times a day—you need five to 10 shots per second to do a power plant—demonstrated that on a krypton fluoride laser, and, more recently, we switched to the focus to argon fluoride, which is deeper UV and more efficient than the Krypton fluoride. And that basically—at NRL when I was supervising it—reached the energy record for that technology. But we've got a long ways to go to get it to the high energy needed for a power plant.Now, what the immediate goal of my company is to get the funds and to build a beam line of argon fluoride that would have the energy and performance needed for a power plant. One of the advantages to laser fusion: you want have a situation where I'm building more than one of something, so for an implosion facility, you have many beam lines, so you build one and then you have the advantage of building more, and a learning curve as you go toward a power plant. We developed a phase program where first we build the beamline, then we build a NIF-like implosion facility only operating with the argon fluoride, demonstrate the high gain—which is a hundred plus for a power plant—and then, after doing that, do the physics in parallel, develop the other technology you need, like low-cost targets. (They can't be expensive. The NIF targets are probably tens of thousands. We can't spend that.) We're going 10 shots per second. All the technologies required for a pilot power plant build a pilot power plant, which, in my view could be maybe 400 megawatts electricity. However, its main function would be to develop the procedures, test the components, and so forth for the follow-on, mass-produced power plants. So one, when you build a pilot power plant, you want to operate it for a few years to get the kinks out before going to mass production. The vision is to go from the beginning of that to the end in about 16 years.So the challenges are you have to generate enough heat, and you have to be able to do this over, and over, and over again.Right. That's right. It has to be high reliability. For an implosion facility, a hundred-thousand-shot reliability is okay. For a power plant, it's got to be in the billion-shot class.And at this point, the reason you think this is doable is what?I think we have confidence in the pellet designs. I have a lot, and I have colleagues that have a lot of experience with building large excimer systems: KrF [Krypton Fluoride Excimer Laser], ArF [Argon Fluoride Excimer Laser]…Those are lasers?Yes. And we have credible conceptual designs for the facility.There’s a lot of companies right now, and startups, with different approaches. I would assume you think this is the most viable approach, or has some other advantages over some of the other things we're seeing with Commonwealth Fusion Systems, which gets mentioned a lot, which is using a different approach. So is the advantage you think it's easier to get to a reactor? What are the advantages of this path?The LaserFusionX approach (7:54)Well, for one, it's different. It's different challenges from the Commonwealth Fusion Systems. There is overlap, and there should be collaboration. For example, you have to, theirs is also deuterium-tritium. However, the physics challenges are different. I think we're farther along in laser fusion to be able—it's a simpler situation than you have. It's very complex interactions in tokamak, and you also have things… have you ever heard of a disruption? Basically it's where all of the magnetic energy all of a sudden goes to the wall, and if you have something like what Commonwealth Fusion Systems—they’ve got to be careful they don't get that. If they do, it would blow a hole in the wall. We don't have that problem with laser fusion. I think we're further along in understanding the physics. Actually, the National Ignition Facility is ahead of the highest fusion gains they've gotten in facilities. I think that they're somewhere just below one or so with the jet. They're up at one and a half. To what extent are the challenges of physics and science, and to what extent are the challenges engineering?Well, the physics has to guide the precision you have on the laser. And I won't say we're 100 percent done in the physics, but we're far enough along to say, okay. That's one reason where I envision building an implosion facility before the pilot power plant so we can test the codes and get all the kinks out of that. Nothing's easy. You have to get the cost of the targets down. The laser, okay, we've demonstrated, for example, at NRL—And NRL is…?Naval Research Laboratory.Naval Research Lab, right.A hundred-shot operation of the KrF laser. We use spark gap for that. We need to go to solid state pulse power, got up to 10 million shots. We need to get from there to a billion shots. And some of that is just simply improving the components. It's straightforward, but you've got to put time into it. I think you need really smart people doing this, that are creative—not too creative, but where you need to be creative, you are creative, and I think if, basically, if you can get the support, for example, to build (a beam line is somewhere around a hundred million dollars). To build the implosion facility and pilot power plant, you're getting into the billion shot, billion dollar class and you have to get those resources and be sure enough that, okay, if the investors put this money in, they're going to get a return on it.Funding the project (10:28)I think people who are investing in this sector, I would assume they may be more familiar with some of the other approaches, so what is the level of investor interest and what is the level of Department of Energy interest?Well, one of the challenges is that, historically, the Department of Energy has put money into two pots. One, laser fusion for stockpile stewardship, and magnetic fusion for energy. That's starting to change, but they don't have a lot of money involved yet, to put money into laser fusion or inertial fusion energy. And one of my challenges is not that the companies are aware of magnetic fusion, they don't understand the challenges of that, or laser fusion, or what's a good idea and a bad idea. And like Commonwealth Fusion systems I think has a good technical basis. If you go the next one down to Helion Energy, they're claiming they can burn helium three made from deuterium interactions, which violates textbook physics, so I'm very… I wonder about that.Would it surprise you, at the end of the day, that there are multiple paths to a commercial fusion reactor?Oh no. I think there are multiple paths to getting to where I get fusion burn, and maybe I make electricity. I think ultimately the real challenge for us is: Can we go reasonably fast? At 16 years, I'm considered somewhat slower than others. The ones that are saying five years I think are delusional. The ones that are saying 50 years, or say never, I don't think understand that yeah, we're pretty far along in this.How big, or rather, how small, theoretically, could one of these reactors be? I know there's been talk about using nuclear fusion as a way to provide power for these new data centers that gobble up so much power that they're using AI for. Would this be the kind of reactor that would power a city power, a big factory power, a data center, all of the above?I think you can get down, at least with our approach, to a couple hundred megawatts. However, my own vision is you're probably better off having power stations for some of the nuclear—with these, the big nuclear plants have multiple reactors at one place, and you'd get the advantage, for example, in our case, to just simply have one target factory and so forth. I don't think we're going to be able to compete. I don't know how small modular reactors go—a hundred megawatts or so, I would guess, and probably can't get down there, but one of my own goals is to get the size down as much as possible, but I think we're talking about hundreds of megawatts. The vision (12:52)What's the big vision? Why are you doing this?Why am I doing it?Yeah, what's the vision? What drives you and where do you think this goes over the next two decades?I may have the best route to get there. If I thought one of these other ones were going to get there, no problem… but all of us have challenges, and I think we can get there. I think from a standing start. As far as getting investment, I've just had pre-seed money, I don't have the big bucks yet. I’ve brought on people that are more experienced than me at extracting money from VCs and investors. (I was told you know a few billionaires.) Basically, for me, I need a few tens of millions to get started—like I'd say, about a hundred million to build the beamline. And then after that… actually I have a conference call on Friday with a representative of the investment bank industry that is very dubious about fusion.I mean, you can understand the skepticism, as a technology. What do they say? “It's the future of energy and always will be.”But the really good thing, I think, about the private investment is that the public investment has been too much focus on big machines which will give you physics, but have pretty much zero chance of being a direct path to fusion energy. You know, $25 billion and I make 500 megawatts thermal, occasionally, and we show that to a power plant executive, they're going to say, “You're kidding me.” We hope to get down cost for the power plants in the few-billion-dollar range.Faster, Please! is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber. This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe