Faster, Please! — The Podcast cover image

Faster, Please! — The Podcast

Latest episodes

undefined
Oct 31, 2024 • 27min

✨⏩ My chat (+transcript) with ... economist Robin Hanson on AI, innovation, and economic reality

In this episode of Faster, Please! — The Podcast, I talk with economist Robin Hanson about a) how much technological change our society will undergo in the foreseeable future, b) what form we want that change to take, and c) how much we can ever reasonably predict.Hanson is an associate professor of economics at George Mason University. He was formerly a research associate at the Future of Humanity Institute at Oxford, and is the author of the Overcoming Bias Substack. In addition, he is the author of the 2017 book, The Elephant in the Brain: Hidden Motives in Everyday Life, as well as the 2016 book, The Age of Em: Work, Love, and Life When Robots Rule the Earth.In This Episode* Innovation is clumpy (1:21)* A history of AI advancement (3:25)* The tendency to control new tech (9:28)* The fallibility of forecasts (11:52)* The risks of fertility-rate decline (14:54)* Window of opportunity for space (18:49)* Public prediction markets (21:22)* A culture of calculated risk (23:39)Below is a lightly edited transcript of our conversationInnovation is Clumpy (1:21)Do you think that the tech advances of recent years — obviously in AI, and what we're seeing with reusable rockets, or CRISPR, or different energy advances, fusion, perhaps, even Ozempic — do you think that the collective cluster of these technologies has put humanity on a different path than perhaps it was on 10 years ago?. . . most people don't notice just how much stuff is changing behind the scenes in order for the economy to double every 15 or 20 years.That’s a pretty big standard. As you know, the world has been growing exponentially for a very long time, and new technologies have been appearing for a very long time, and the economy doubles roughly every 15 or 20 years, and that can't happen without a whole lot of technological change, so most people don't notice just how much stuff is changing behind the scenes in order for the economy to double every 15 or 20 years. So to say that we're going more than that is really a high standard here. I don't think it meets that standard. Maybe the standard it meets is to say people were worried about maybe a stagnation or slowdown a decade or two ago, and I think this might weaken your concerns about that. I think you might say, well, we're still on target.Innovation's clumpy. It doesn't just out an entirely smooth . . . There are some lumpy ones once in a while, lumpier innovations than usual, and those boost higher than expected, sometimes lower than expected sometimes, and maybe in the last ten years we've had a higher-than-expected clump. The main thing that does is make you not doubt as much as you did when you had the lower-than-expected clump in the previous 10 years or 20 years because people had seen this long-term history and they thought, “Lately we're not seeing so much. I wonder if this is done. I wonder if we're running out.” I think the last 10 years tells you: well, no, we're kind of still on target. We're still having big important advances, as we have for two centuries.A history of AI advancement (3:25)People who are especially enthusiastic about the recent advances with AI, would you tell them their baseline should probably be informed by economic history rather than science fiction?[Y]es, if you're young, and you haven't seen the world for decades, you might well believe that we are almost there, we're just about to automate everything — but we're not.By technical history! We have 70-odd years of history of AI. I was an AI researcher full-time from ’84 to ’93. If you look at the long sweep of AI history, we've had some pretty big advances. We couldn't be where we are now without a lot of pretty big advances all along the way. You just think about the very first digital computer in 1950 or something and all the things we've seen, we have made large advances — and they haven't been completely smooth, they've come in a bit of clumps.I was enticed into the field in 1984 because of a recent set of clumps then, and for a century, roughly every 30 years, we've had a burst of concern about automation and AI, and we've had big concern in the sense people said, “Are we almost there? Are we about to have pretty much all jobs automated?” They said that in the 1930s, they said it in the 1960s — there was a presidential commission in the 1960s: “What if all the jobs get automated?” I jumped in in the late ’80s when there was a big burst there, and I as a young graduate student said, “Gee, if I don't get in now, it'll all be over soon,” because I heard, “All the jobs are going to be automated soon!”And now, in the last decade or so, we've had another big burst, and I think people who haven't seen that history, it feels to them like it felt to me in 1984: “Wow, unprecedented advances! Everybody's really excited! Maybe we're almost there. Maybe if I jump in now, I'll be part of the big push over the line to just automate everything.” That was exciting, it was tempting, I was naïve, and I was sucked in, and we're now in another era like that. Yes, if you're young, and you haven't seen the world for decades, you might well believe that we are almost there, we're just about to automate everything — but we're not.I like that you mentioned the automation scare of the ’60s. Just going back and looking at that, it really surprised me how prevalent and widespread and how serious people took that. I mean, you can find speeches by Martin Luther King talking about how our society is going to deal with the computerization of everything. So it does seem to be a recurrent fear. What would you need to see to think it is different this time?The obvious relevant parameter to be tracking is the percentage of world income that goes to automation, and that has been creeping up over the decades, but it's still less than five percent.What is that statistic?If you look at the percentage of the economy that goes to computer hardware and software, or other mechanisms of automation, you're still looking at less than five percent of the world economy. So it's been creeping up, maybe decades ago it was three percent, even one percent in 1960, but it's creeping up slowly, and obviously, when that gets to be 80 percent, game over, the economy has been replaced — but that number is creeping up slowly, and you can track it, so when you start seeing that number going up much faster or becoming a large number, then that's the time to say, “Okay, looks like we're close. Maybe automation will, in fact, take over most jobs, when it's getting most of world income.”If you're looking at economic statistics, and you're looking at different forecasts, whether by the Fed or CBO or Wall Street banks and the forecasts are, “Well, we expect, maybe because of AI, productivity growth to be 0.4 percentage points higher over this kind of time. . .” Those kinds of numbers where we're talking about a tenth of a point here, that's not the kind of singularity-emergent world that some people think or hope or expect that we're on.Absolutely. If you've got young enthusiastic tech people, et cetera — and they're exaggerating. The AI companies, even they're trying to push as big a dramatic images they can. And then all the stodgy conservative old folks, they're afraid of seeming behind the times, and not up with things, and not getting it — that was the big phrase in the Internet Boom: Who “gets it” that this is a new thing?I'm proud to be a human, to have been part of the civilization to have done this . . . but we've seen that for 70 years: new technologies, we get excited, we try them out, we try to apply them, and that's part of what progress is.Now it would be #teamgetsit.Exactly, something like that. They're trying to lean into it, they're trying to give it the best spin they can, but they have some self-respect, so they're going to give you, “Wow 0.4 percent!” They'll say, “That's huge! Wow, this is a really big thing, everybody should be into this!” But they can't go above 0.4 percent because they've got some common sense here. But we've even seen management consulting firms over the last decade or so make predictions that 10 years in the future, half all jobs would be automated. So we've seen this long history of these really crazy extreme predictions into a decade, and none of those remotely happened, of course. But people do want to be in with the latest thing, and this is obviously the latest round of technology, it's impressive. I'm proud to be a human, to have been part of the civilization to have done this, and I’d like to try them out, and see what I can do with them, and think of where they could go. That's all exciting and fun, but we've seen that for 70 years: new technologies, we get excited, we try them out, we try to apply them, and that's part of what progress is. The tendency to control new tech (9:28)Not to talk just about AI, but do you think AI is important enough that policymakers need to somehow guide the technology to a certain outcome? Daron Acemoglu, one of the Nobel Prize winners, has for quite some time, and certainly recently, said that this technology needs to be guided by policymakers so that it helps people, it helps workers, it creates new tasks, it creates new things for them to do, not automate away their jobs or automate a bunch of tasks.Do you think that there's something special about this technology that we need to guide it to some sort of outcome?I think those sort of people would say that about any new technology that seemed like it was going to be important. They are not actually distinguishing AI from other technologies. This is just what they say about everything.It could be “technology X,” we must guide it to the outcome that I have already determined.As long as you've said, “X is new, X is exciting, a lot of things seem to depend on X,” then their answer would be, “We need to guide it.” It wouldn't really matter what the details of X were. That's just how they think about society and technology. I don't see anything distinctive about this, per se, in that sense, other than the fact that — look, in the long run, it's huge.Space, in the long run, is huge, because obviously in the long run almost everything will be in space, so clearly, eventually, space will be the vast majority of everything. That doesn't mean we need to guide space now or to do anything different about it, per se. At the moment, space is pretty small, and it's pretty pedestrian, but it's exciting, and the same for AI. At the moment, AI is pretty small, minor, AI is not remotely threatening to cause harm in our world today. If you look about harmful technologies, this is way down the scale. Demonstrated harms of AI in the last 10 years are minuscule compared to things like construction equipment, or drugs, or even television, really. This is small.Ladders for climbing up on your roof to clean out the gutters, that's a very dangerous technology.Yeah, somebody should be looking into that. We should be guiding the ladder industry to make sure they don't cause harm in the world.The fallibility of forecasts (11:52)I'm not sure how much confidence we should ever have on long-term economic forecasts, but have you seen any reason to think that they might be less reliable than they always have been? That we might be approaching some sort of change? That those 50-year forecasts of entitlement spending might be all wrong because the economy's going to be growing so much faster, or the longevity is going to be increasing so much faster?Previously, the world had been doubling roughly every thousand years, and that had been going on for maybe 10,000 years, and then, within the space of a century, we switched to doubling roughly every 15 or 20 years. That's a factor of 60 increase in the growth rate, and it happened after a previous transition from forging to farming, roughly 10 doublings before.It was just a little over two centuries ago when the world saw this enormous revolution. Previously, the world had been doubling roughly every thousand years, and that had been going on for maybe 10,000 years, and then, within the space of a century, we switched to doubling roughly every 15 or 20 years. That's a factor of 60 increase in the growth rate, and it happened after a previous transition from forging to farming, roughly 10 doublings before.So you might say we can't trust these trends to continue maybe more than 10 doublings, and then who knows what might happen? You could just say — that's 200 years, say, if you double every 20 years — we just can't trust these forecasts more than 200 years out. Look at what's happened in the past after that many doublings, big changes happened, and you might say, therefore, expect, on that sort of timescale, something else big to happen. That's not crazy to say. That's not very specific.And then if you say, well, what is the thing people most often speculate could be the cause of a big change? They do say AI, and then we actually have a concrete reason to think AI would change the growth rate of the economy: That is the fact that, at the moment, we make most stuff in factories, and factories typically push out from the factory as much value as the factory itself embodies, in economic terms, in a few months.If you could have factories make factories, the economy could double every few months. The reason we can't now is we have humans in the factories, and factories don't double them. But if you could make AIs in factories, and the AIs made factories, that made more AIs, that could double every few months. So the world economy could plausibly double every few months when AI has dominated the economy.That's of the magnitude doubling every few months versus doubling every 20 years. That's a magnitude similar to the magnitude we saw before from farming to industry, and so that fits together as saying, sometime in the next few centuries, expect a transition that might increase the growth rate of the economy by a factor of 100. Now that's an abstract thing in the long frame, it's not in the next 10 years, or 20 years, or something. It's saying that economic modes only last so long, something should come up eventually, and this is our best guess of a thing that could come up, so it's not crazy.The risks of fertility-rate decline (14:54)Are you a fertility-rate worrier?If the population falls, the best models say innovation rates would fall even faster.I am, and in fact, I think we have a limited deadline to develop human-level AI, before which we won't for a long pause, because falling fertility really threatens innovation rates. This is something we economists understand that I think most other people don't: You might've thought that a falling population could be easily compensated by a growing economy and that we would still have rapid and fast innovation because we would just have a bigger economy with a lower population, but apparently that's not true.If the population falls, the best models say innovation rates would fall even faster. So say the population is roughly predicted to peak in three decades and then start to fall, and if it's falls, it would fall roughly a factor of two every generation or two, depending on which populations dominate, and then if it fell by a factor of 10, the innovation rate would fall by more than a factor of 10, and that means just a slower rate of new technologies, and, of course, also a reduction in the scale of the world economy.And I think that plausibly also has the side effect of a loss in liberality. I don't think people realize how much it was innovation and competition that drove much of the world to become liberal because the winning nations in the world were liberal and the rest were afraid of falling too far behind. But when innovation goes away, they won't be so eager to be liberal to be innovative because innovation just won't be a thing, and so much of the world will just become a lot less liberal.There's also the risk that — basically, computers are a very durable technology, in principle. Typically we don't make them that durable because every two years they get twice as good, but when innovation goes away, they won't get good very fast, and then you'll be much more tempted to just make very durable computers, and the first generation that makes very durable computers that last hundreds of years, the next generation won't want to buy new computers, they'll just use the old durable ones as the economy is shrinking and then the industry that commuters might just go away. And then it could be a long time before people felt a need to rediscover those technologies.I think the larger-scale story is there's no obvious process that would prevent this continued decline because there's no level at which, when you get that, some process kicks in and it makes us say, “Oh, we need to increase the population.” But the most likely scenario is just that the Amish and [Hutterites] and other insular, fertile subgroups who have been doubling every 20 years for a century will just keep doing that and then come to dominate the world, much like Christians took over the Roman Empire: They took it over by doubling every 20 years for three centuries. That's my default future, and then if we don't get AI or colonize space before this decline, which I've estimated would be roughly 70 years’ worth more of progress at previous rates, then we don't get it again until the Amish not only just take over the world, but rediscover a taste for technology and economic growth, and then eventually all of the great stuff could happen, but that could be many centuries later.This does not sound like an issue that can be fundamentally altered by tweaking the tax code.You would have to make a large —— Large turn of the dial, really turn that dial.People are uncomfortable with larger-than-small tweaks, of course, but we're not in an era that's at all eager for vast changes in policy, we are in a pretty conservative era that just wants to tweak things. Tweaks won't do it.Window of opportunity for space (18:49)We can't do things like Daylight Savings Time, which some people want to change. You mentioned this window — Elon Musk has talked about a window for expansion into space, and this is a couple of years ago, he said, “The window has closed before. It's open now. Don't assume it will always be open.”Is that right? Why would it close? Is it because of higher interest rates? Because the Amish don't want to go to space? Why would the window close?I think, unfortunately, we've got a limited window to try to jumpstart a space economy before the earth economy shrinks and isn't getting much value from a space economy.There's a demand for space stuff, mostly at the moment, to service Earth, like the internet circling the earth, say, as Elon's big project to fund his spaceships. And there's also demand for satellites to do surveillance of the earth, et cetera. As the earth economy shrinks, the demand for that stuff will shrink. At some point, they won't be able to afford fixed costs.A big question is about marginal cost versus fixed costs. How much is the fixed cost just to have this capacity to send stuff into space, versus the marginal cost of adding each new rocket? If it's dominated by marginal costs and they make the rockets cheaper, okay, they can just do fewer rockets less often, and they can still send satellites up into space. But if you're thinking of something where there's a key scale that you need to get past even to support this industry, then there's a different thing.So thinking about a Mars economy, or even a moon economy, or a solar system economy, you're looking at a scale thing. That thing needs to be big enough to be self-sustaining and economically cost-effective, or it's just not going to work. So I think, unfortunately, we've got a limited window to try to jumpstart a space economy before the earth economy shrinks and isn't getting much value from a space economy. Space economy needs to be big enough just to support itself, et cetera, and that's a problem because it's the same humans in space who are down here on earth, who are going to have the same fertility problems up there unless they somehow figure out a way to make a very different culture.A lot of people just assume, “Oh, you could have a very different culture on Mars, and so they could solve our cultural problems just by being different,” but I'm not seeing that. I think they would just have a very strong interconnection with earth culture because they're going to have just a rapid bandwidth stuff back and forth, and their fertility culture and all sorts of other culture will be tied closely to earth culture, so I'm not seeing how a Mars colony really solves earth cultural problems.Public prediction markets (21:22)The average person is aware that these things, whether it's betting markets or these online consensus prediction markets, that they exist, that you can bet on presidential races, and you can make predictions about a superconductor breakthrough, or something like that, or about when we're going to get AGI.To me, it seems like they have, to some degree, broken through the filter, and people are aware that they're out there. Have they come of age?. . . the big value here isn't going to be betting on elections, it's going to be organizations using them to make organization decisions, and that process is being explored.In this presidential election, there's a lot of discussion that points to them. And people were pretty open to that until Trump started to be favored, and people said, “No, no, that can't be right. There must be a lot of whales out there manipulating, because it couldn't be Trump's winning.” So the openness to these things often depends on what their message is.But honestly, the big value here isn't going to be betting on elections, it's going to be organizations using them to make organization decisions, and that process is being explored. Twenty-five years ago, I invented this concept of decision markets using in organizations, and now in the last year, I've actually seen substantial experimentation with them and so I'm excited to see where that goes, and I'm hopeful there, but that's not so much about the presidential markets.Roughly a century ago there was more money bet in presidential betting markets than in stock markets at the time. Betting markets were very big then, and then they declined, primarily because scientific polling was declared a more scientific approach to estimating elections than betting markets, and all the respectable people wanted to report on scientific polls. And then of course the stock market became much, much bigger. The interest in presidential markets will wax and wane, but there's actually not that much social value in having a better estimate of who's going to win an election. That doesn't really tell you who to vote for, so there are other markets that would be much more socially valuable, like predicting the consequences of who's elected as president. We don't really have much markets on those, but maybe we will next time around. But there is a lot of experimentation going in organizational prediction markets at the moment, compared to, say, 10 years ago, and I'm excited about those experiments.A culture of calculated risk (23:39)I want a culture that, when one of these new nuclear reactors, or these nuclear reactors that are restarting, or these new small modular reactors, when there's some sort of leak, or when a new SpaceX Starship, when some astronaut gets killed, that we just don't collapse as a society. That we're like, well, things happen, we're going to keep moving forward.Do you think we have that kind of culture? And if not, how do we get it, if at all? Is that possible?That's the question: Why has our society become so much more safety-oriented in the last half-century? Certainly one huge sign of it is the way we way overregulated nuclear energy, but we've also now been overregulating even kids going to school. Apparently they can't just take their bikes to school anymore, they have to go on a bus because that's safer, and in a whole bunch of ways, we are just vastly more safety-oriented, and that seems to be a pretty broad cultural trend. It's not just in particular areas and it's not just in particular countries.I've been thinking a lot about long-term cultural trends and trying to understand them. The basic story, I think, is we don't have a good reason to believe long-term cultural trends are actually healthy when they are shared trends of norms and status markers that everybody shares. Cultural things that can vary within the cultures, like different technologies and firm cultures, those we're doing great. We have great evolution of those things, and that's why we're having all these great technologies. But things like safetyism is more of a shared cultural norm, and we just don't have good reasons to think those changes are healthy, and they don't fix themselves, so this is just another example of something that’s going wrong.They don't fix themselves because if you have a strong, very widely shared cultural norm, and someone has a different idea, they need to be prepared to pay a price, and most of us aren’t prepared to pay that price.If we had a healthy cultural evolution competition among even nations, this would be fine. The problem is we have this global culture, a monoculture, really, that enforces everybody.Right. If, for example, we have 200 countries, if they were actually independent experiments and had just had different cultures going different directions, then I'd feel great; that okay, the cultures that choose too much safety, they'll lose out to the others and eventually it'll be worn out. If we had a healthy cultural evolution competition among even nations, this would be fine. The problem is we have this global culture, a monoculture, really, that enforces everybody.At the beginning of Covid, all the usual public health efforts said all the usual things, and then world elites got together and talked about it, and a month later they said, “No, that's all wrong. We have a whole different thing to do. Travel restrictions are good, masks are good, distancing is good.” And then the entire world did it the same way, and there was strong pressure on any deviation, even Sweden, that would dare to deviate from the global consensus.If you look about many kinds of regulation, it's very little deviation worldwide. We don't have 200, or even 100, independent policy experiments, we basically have a main global civilization that does it the same, and maybe one or two deviants that are allowed to have somewhat different behavior, but pay a price for it.On sale everywhere The Conservative Futurist: How To Create the Sci-Fi World We Were PromisedFaster, Please! is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber.Micro Reads▶ Economics* The Next President Inherits a Remarkable Economy - WSJ* The surprising barrier that keeps us from building the housing we need - MIT* Trump’s tariffs, explained - Wapo* Watts and Bots: The Energy Implications of AI Adoption - SSRN* The Changing Nature of Technology Shocks - SSRN* AI Regulation and Entrepreneurship - SSRN▶ Business* Microsoft reports big profits amid massive AI investments - Ars* Meta’s Next Llama AI Models Are Training on a GPU Cluster ‘Bigger Than Anything’ Else - Wired* Apple’s AI and Vision Pro Products Don’t Meet Its Standards - Bberg Opinion* Uber revenues surge amid robust US consumer spending - FT* Elon Musk in funding talks with Middle East investors to value xAI at $45bn - FT▶ Policy/Politics* Researchers ‘in a state of panic’ after Robert F. Kennedy Jr. says Trump will hand him health agencies - Science* Elon Musk’s Criticism of ‘Woke AI’ Suggests ChatGPT Could Be a Trump Administration Target - Wired* US Efforts to Contain Xi’s Push for Tech Supremacy Are Faltering - Bberg* The Politics of Debt in the Era of Rising Rates - SSRN▶ AI/Digital* Alexa, where’s my Star Trek Computer? - The Verge* Toyota, NTT to Invest $3.3 Billion in AI, Autonomous Driving - Bberg* Are we really ready for genuine communication with animals through AI? - NS* Alexa’s New AI Brain Is Stuck in the Lab - Bberg* This AI system makes human tutors better at teaching children math - MIT* Can Machines Think Like Humans? A Behavioral Evaluation of LLM-Agents in Dictator Games - Arxiv▶ Biotech/Health* Obesity Drug Shows Promise in Easing Knee Osteoarthritis Pain - NYT* Peak Beef Could Already Be Here - Bberg Opinion▶ Clean Energy/Climate* Chinese EVs leave other carmakers with only bad options - FT Opinion* Inside a fusion energy facility - MIT* Why aren't we driving hydrogen powered cars yet? There's a reason EVs won. - Popular Science* America Can’t Do Without Fracking - WSJ Opinion▶ Robotics/AVs* American Drone Startup Notches Rare Victory in Ukraine - WSJ* How Wayve’s driverless cars will meet one of their biggest challenges yet - MIT▶ Space/Transportation* Mars could have lived, even without a magnetic field - Big Think▶ Up Wing/Down Wing* The new face of European illiberalism - FT* How to recover when a climate disaster destroys your city - Nature▶ Substacks/Newsletters* Thinking about "temporary hardship" - Noahpinion* Hold My Beer, California - Hyperdimensional* Robert Moses's ideas were weird and bad - Slow Boring* Trading Places? No Thanks. - The Dispatch* The Case For Small Reactors - Breakthrough Journal* The Fourth Industrial Revolution and the Future of Work - Conversable EconomistFaster, Please! is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber. This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe
undefined
Oct 23, 2024 • 27min

🚀 My chat (+transcript) with space journalist Eric Berger on SpaceX and America's New Space Age

In this conversation with Eric Berger, the senior space editor at Ars Technica, the discussion revolves around SpaceX's groundbreaking achievements, especially the successful launch and mid-air capture of the Starship rocket's booster. They dive into the implications of these advancements for future space travel. Berger highlights the commercial potential of SpaceX's missions, especially with Starlink, and reflects on the challenges and opportunities in lunar and Mars exploration, emphasizing how innovative engineering can revolutionize our path to becoming a multi-planetary species.
undefined
Oct 10, 2024 • 38min

💥 My chat (+transcript) with economist Eli Dourado on creating a fantastic future

Eli Dourado, chief economist at the Abundance Institute and a voice in economic innovation, discusses his vision for overcoming stagnation. He believes we're on the brink of a productivity boom, spurred by AI and creative disruption. Dourado delves into the evolving job market and the importance of embracing change. He also explores future energy solutions, including fusion and the role of nuclear power. Political reform, like NEPA, is vital for progress, while a pro-abundance mindset can fuel innovation and inclusive growth.
undefined
Sep 26, 2024 • 32min

☀️ My chat (+transcript) with economist Noah Smith on technological progress

Noah Smith, an economist known for his insights on technological progress, dives deep into the impact of advancements like generative AI and energy technologies on society. He discusses how geopolitical tensions can actually spur innovation and the benefits of a fragmented industrial policy. Smith also reflects on Japan’s economic history, drawing parallels that may soon apply to other nations, emphasizing the importance of well-thought-out regulations for AI and the need for Europe to embrace local innovation strategies.
undefined
Sep 12, 2024 • 23min

📖 My chat (+transcript) with Mentava founder Niels Hoven on accelerating kids’ education

Niels Hoven, founder of Mentava and a former product manager at Cloudflare, passionately explores innovative educational approaches. He argues for treating academics like sports, advocating for personalized learning that meets each child's unique needs. Hoven critiques the restrictive one-size-fits-all model in public schools and highlights the controversy around banning middle school algebra in San Francisco. He emphasizes empowering young minds to delve into advanced subjects, envisioning a future where technology enhances education for all learners.
undefined
16 snips
Sep 5, 2024 • 27min

⚡ My chat (+transcript) with venture capitalist Katherine Boyle on 'American Dynamism'

In this chat, venture capitalist Katherine Boyle dives into American Dynamism, a movement empowering startups to tackle national challenges. She discusses how innovators are reshaping government-tech collaboration, emphasizing the need for a long-term vision in Washington. Katherine highlights the gap between traditional government and modern solutions, revealing how younger leaders are driving this change. She envisions a future where technology bridges critical sectors, restoring the American Dream and fostering national growth.
undefined
Aug 15, 2024 • 29min

⚠ My chat (+transcript) with BCG economist Philipp Carlsson-Szlezak on dealing with macroeconomic risk

Philipp Carlsson-Szlezak, a global chief economist at BCG, brings a refreshing perspective on economic analysis with his advocacy for rational optimism. He discusses the notion of a 'polycrisis' and how understanding macroeconomic risks is vital during turbulent times. The conversation dives into the impact of AI on employment, challenging fears of job loss with historical insights on technology creating new opportunities. Carlsson-Szlezak also critiques common misconceptions about the Federal Reserve's strategies to tackle inflation amidst complex geopolitical tensions.
undefined
Aug 9, 2024 • 24min

🤖🧠 My chat (+transcript) with Google DeepMind's Séb Krier on AGI and public policy

Séb Krier, an AI policy expert and attorney at Google DeepMind, discusses the inevitable rise of Artificial General Intelligence (AGI). He emphasizes the importance of developing thoughtful public policies to harness AGI's benefits while managing its risks. Krier highlights the need for a unified regulatory framework in the U.S. and explores AGI's implications for national security, likening it to historical projects like the Manhattan Project. He also shares insights on the practical applications of AI tools and how they can benefit everyday users.
undefined
Jul 19, 2024 • 23min

⤵ My chat (+transcript) with investor Ruchir Sharma on where capitalist economies went wrong

Investor Ruchir Sharma and host discuss the American addiction to 'pain management' in capitalism, the declining faith in capitalism among Americans, the role of government intervention, implications of populist policies, factors driving economic policy changes, and proposing economic solutions amidst political realities.
undefined
Jul 11, 2024 • 26min

⚛ My chat (+transcript) with the US Energy Department's Mike Goff on powering the US with more nuclear energy

✈ A quick note: I will be traveling through the middle of the month and will be posting a bit less than usual and perhaps a bit shorter than usual.After decades of resistance to nuclear power, growing concern over climate change, rising electricity needs, and a desire for greater energy independence are spurring renewed public interest in a future powered by atomic fission (perhaps fusion, too). Today on Faster, Please! — The Podcast, I talk to Dr. Mike Goff about the state of US nuclear power, the developing advancements in nuclear technology, and what it will take to reach our vast potential.Goff is the acting assistant secretary and the principal deputy assistant secretary for the Department of Energy’s Office of Nuclear Energy. He previously spent over 30 years at Idaho National Laboratory, including a major advisory and management role. He has written over 70 publications on the nuclear fuel cycle.In This Episode* Atomic Age 2.0 (1:31)* Major concerns (7:37)* Out of practice (11:04)* Next-generation policy (17:38)* Human capital (21:48)* Fusion forecast (23:12)Below is a lightly edited transcript of our conversationAtomic Age 2.0 (1:31)The Energy Secretary recently spoke about adding a lot more nuclear capacity, tripling it, I think, by 2050 or so. And before we get into whether that's possible, I wanted to ask you: As you understand it, what is the current consensus explanation for why the Nuclear and Atomic Age of the ’50s and ’60s, why that kind of ended? Because when the secretary spoke about building more capacity, I thought about the — and this is something maybe a lot of people are unaware of, that President Nixon had a plan to build a lot of more nuclear reactors in this country back in the ’70s during the oil crisis; that didn't happen, and we all know about Three Mile Island. But is there a consensus as to why Atomic Age 1.0 came to an end? Obviously we still get a lot of energy from nuclear, but not what people had imagined 40 years ago.There are a variety of reasons. We did build a lot at one point, and we were building 10 plants a year, pretty extensive builds out there. We did then have Three Mile Island in the late ’70s, and then we got costs started going up, and schedules started increasing on the builds, and we ended up not having a lot of energy growth, in fact, we went for a long period where we weren't having a lot of energy growth, and we had a lot of other energy sources, natural gas, coal, and all. We had a lot of other energy sources out there as well. So yeah, we became pretty stagnated around 20 percent of the electricity. But now, like you say, yeah, there's been a big change in what we think the needs are for nuclear going forward, for a variety of reasons.My background is journalism, and as a journalist I’ve written, I know, multiple stories in my life about a Nuclear Renaissance. So I'm wondering why this time looks to be different. You suggested in your previous answer that there might be some reasons. What are those reasons that we may be entering a new age where we will see an expansion in the nuclear sector?I do think we will see that expansion, and, in fact, I think we have to see that expansion, and it's because of a lot of the positive attributes of nuclear right now. Obviously there's a lot of focus on trying to get more clean energy out there, and nuclear is a large base load source of clean energy. And it's not just CO2 emission, but it doesn't emit particulates and all, as well, so it's good air, good quality of life. So it has those key attributes. But there are other clean energy sources as well: renewables, hydro, and all that. But I think the recognition that, if you are going to go toward decarbonization, you need still base load electricity too. You need base load electricity to help intermittent sources like renewables to be able to expand more as well. So nuclear is very good at enabling decarbonization, not just by adding clean electricity to the grid, but enabling you to expand out other renewables like wind and solar and all, as well.Additionally, nuclear is very reliable. Of the energy sources, it has the highest capacity factor of any of the energy sources. In the United States, we run 93 percent of the time, so the existing fleet that we have out there of 94 plants, they're producing a 100 percent of the power 93 percent of the time, which dwarfs what any other energy source does out there as well.Nuclear is safe. At times people are concerned about safety, but, in reality, it's actually one of the safest energy sources out there and continues to demonstrate that.It's resilient for different weather-related events. It can still produce electricity out there as well. It also has a lot of energy security. And as we've learned, unfortunately, from Russia's unprovoked and unjustified invasion of Ukraine, we recognize energy security is national security, so nuclear really does help us on that national security front. It provides an energy source that we can largely on-source from us and our allies. We’ve got assured fuel supplies, and provides that long-term power. You can put fuel in it and it can last for two years or so.And I guess one other thing I'll add out there as well, is it's a job creator. Of the different energy sources, the amount of jobs associated with nuclear are some of the highest on the amount of electricity produced. And when you actually start building nuclear, like we saw in Vogtle in Georgia where they were building the two plants, it creates huge amounts of jobs. In fact, I heard a stat recently that 35,000 union workers were trained as part of the construction of the Vogtle power plant, so it's a good job creator in all, as well. And again, the power density is great, it doesn't take up a lot of space, and with the advanced technologies that we've developed in the United States, you've continued to increase in the safety, you can have plants of a variety of different sizes that can be easily deployed to, say, retiring coal plants. It just has a lot of flexibility that it hasn't had in the past, but also it's that key recognition of its clean energy attributes, but its energy security attributes as well.Major concerns (7:37)I did not major in nuclear science, I majored in history and political science, but I remember I took a class as an undergraduate at Northwestern University on the nuclear fuel cycle, and I remember to this day that my professor — of course, this was obviously a while ago, and I think what most of the students knew about nuclear energy was probably Three Mile Island — and I remember to this day distinctly the professor saying, “If they wanted to build a nuclear reactor in my backyard, I would be totally fine with it.” He had zero fear on the safety issue. Now when you give that rap that you just gave me about the wonders of nuclear energy before regular people, what is their response? Do they worry about the nuclear waste? Do they worry about safety? Are they immediately sold, or what are the concerns that typically get raised to you?You brought them up. I mean, safety is brought up because you do see these high profile accidents like Three Mile Island, Chernobyl, Fukushima, which were accidents. They weren't good things that you want to have happen, but the industry's also a very learning industry. The improvements that come out of those events have just made the industry even safer and safer. And again, it's still safer than most any other electricity-producing industry out there as well.Waste does get brought up. We have not implemented a final disposal solution for the spent fuel from our reactors, but we have safely stored and managed the spent fuel over the last six decades, and the amount of fuel that's generated, I think the stat that gets tossed around, you could fit it all in a Walmart parking lot. This is not a lot of material because it's a high energy-density fuel. It's not a lot of material, and again, we safely manage that and store that. We have countries now that are moving forward with geological repositories, which we need to be doing in the United States. In fact, just last week, I went and visited the repository that hopefully will be operating next year in Finland for disposing of their spent fuel. We can do that, it’s not a technical issue, so we can safely manage the spent fuel.The other issue that always comes up is still cost. We do have to demonstrate now that we can build these plants safely, and efficiently, and at a reasonable cost. On the Vogtle plant there were cost overruns and schedule overruns, but between Vogtle Unit 3 and Unit 4, there was about a 30 percent reduction in costs between those plants, so we are starting to get to where we can be deploying nth-of-a-kind cost plants out there as well. And hopefully with some of the small modular reactor designs and all that are going to rely more on modular construction, we can even get to nth-of-a-kind cost even quicker. It still takes some pushing and understanding to make sure that people do understand the advancements that have been made on nuclear technology, that it's not our parents' nuclear technology, there's a new round of technology out there.Out of practice (11:04)You raised two good points there. The cost issue, and that's a great stat about the Vogtle plant and the reduction between the two reactors. Is it your sense that the fact that we haven't been consistently building reactors and learning from the previous build, and having trained people who've worked on multiple reactors, that each one has become like this bespoke mega project? It’s my sense, and it seems logical, at least to me, that that has been a cost driver, that we haven't been able to churn these out like 10 a year, every year, decade after decade, because clearly, if that was the case, I don't see how we don't learn how to build them better, faster, and more efficiently. But that's not what we've been doing, obviously.That's right. It's not. Even when I say with Vogtle, you had to stand back up the whole supply chain, you had to retrain the workforce, so there was a lot of learning in that process, even though, too, we did recognize on that plant you need to have designs very well finalized and standardized as well. One of the problems we realized from the buildout of the 90-something plants that we have now is no two plants were ever that similar. Everyone wanted to make a tweak in their plant, so we never got to where we had standardized designs. So I think now that we're getting that trained workforce, getting the supply chain up there, and our vendors are really saying, “We're doing standardized plants. If someone else wants to make a tweak on this plant, they have to go somewhere else,” that people are going to go with standardized designs so we can really replicate these and get that cost benefit from it. The challenges that you brought up, we have to overcome, and I think we're set up now to be able to overcome that. I appreciate all the effort that went into building Units 3 and 4 at Vogtle. We've got enough benefit from that learning there and hopefully build very soon here.There's a world where we have tripled our nuclear generating capacity, as Secretary Granholm said. Can that be a world where we get all our nuclear power from light water nuclear reactors, or must there be different kinds of reactors? You mentioned the small modular reactors, and I've interviewed startups doing microreactors, I don't know, maybe they'll be used to power data centers, but can that world of greatly increased nuclear generation, even with improvements in light water reactors, must there be different kinds of reactors?I wouldn't say “must.” I think there will be. I think we will have that variability. I think we will still have large plants being built. I think maybe five years ago you wouldn't hear that people were talking about building gigawatt-sizes plants again. I think we'll have the gigawatt-size plants, we'll have the small modular reactors that are water-cooled, but I think we will get some of those advanced reactors out there: the Generation IV reactors, the sodium-cooled fast reactors that have the capacity to be able to burn waste better and also increase the sustainability of the amount of fuel they use. I think you’ll also have the high-temperature gas reactors that are helium-cooled, that use TRISO fuel. You'll have those because we need to not only decarbonize the electricity sector, we've got to decarbonize the industrial sector. That's much more challenging, and the high temperatures that can be provided from those reactors will help us in that decarbonization process. So I think we will have a mixture out there. There are cases where the Gen IV systems are going to be better than the gigawatt-sized plants for the needs that are out there, but large power plants are going to be needed as well. Especially, like you say, you bring up the data centers, the amount of growth that we're hearing for electricity right now, I think again, we'll see gigawatt-sized plants will be needed to be able to meet that growth.Yeah, I tell you, nothing frustrates me more than reading about what AI could perhaps do for our economy and then having people say, “Well, but we know we can't do it because we can't supply the power” or “We can't supply enough clean power,” I mean, well then it’d be sure great to have more nuclear energy. And I wonder, as you sort of tick off some of the potential advances and new kinds of reactors, maybe I look backward too much, but I can't help but wonder what nuclear reactors would be like today, where we would be today, maybe we would already have fusion reactors had we proceeded with this kind of momentum every decade since 1980. It drives me crazy, and you're a nuclear engineer, that must drive you crazy.It does, I've been doing this . . . my first job in the nuclear industry was almost 40 years ago when I was still in college, and there have definitely been ups and downs in funding. In fact, there were some periods where there was almost zero research and development dollars spent in the government on nuclear energy. Luckily, though, the thing that we have is, under the four presidential administrations, there's been a real steady climb in the recognition of the importance of nuclear, and the funding to support it. So I'm happy that we have had this period that goes back to the early 2000s that's been really steady growth in recognition of nuclear. If we would've not had some of those laws in the late ’80s and ’90s, yeah, we could probably be further ahead, especially on some of the advanced technologies. Because yes, some of those advanced technologies started on research that was back in the ’50s, ’60s and ’70s: the sodium-cooled fast reactor, the molten salt reactor, all of those were based on R&D that we did back in the early days, as well.Next-generation policy (17:38)Which leads me to this question: You work for the government. I work for a public policy think tank, so of course I'm going to think about: Given where we are today, what government needs to do going forward, both on the R&D front and on the regulatory front, are we doing enough basic research for whatever the next, or the next next generation of nuclear is, and do we now have the kind regulatory framework we need for that next generation of reactors?I'll go to the research one first—and I should note, my background is, I'm an R&D person, I came out of the national labs, so of course we always need more research and development. But that said, we have been blessed by funding from Congress and the administration that there's a significant amount of money for research and development in the United States. And I'll say that's good, because the one thing I will note, I do believe innovation in the US, as far as the nuclear technology, we are the best. The technologies that we're developing and our vendors are deploying it, really, it is the cutting edge technology, so it's good we have that R&D, and it's important, as you know, we need to continue to have it to move forward on that next generation of technologies and continue to make improvements on the technologies out there. So I think we have a good research base.There's some infrastructure that we still need if we start deploying, say, when we mentioned that sodium-cooled fast reactor, we don't have a testing capability for that type of system. We shut down our last testing system on a fast reactor in 1994. We would probably need some additional infrastructure. But again, we have a pretty good base. And I'll say that also on the regulatory side. We do have a pretty good base as well. The Nuclear Regulatory Commission is obviously focused on light water reactors throughout its history, but they've actually been doing a good job at being able to work with some of the developers. We have three entities out there that are working on Generation IV reactors. TerraPower did submit their construction authorization to the Nuclear Regulatory Commission, and they've accepted it, so they're working well with them, even though they have a water-based system. Hopefully X-energy, who's doing a high-temperature gas reactor, working with the government and all, as well, will be moving forward, as well. And we've had a third that's working in the molten salt space, a molten salt-cooled reactor that has already received a construction permit to go forward on a prototype reactor, a Kairos company.I'm sure there's got to be reforms still on the Nuclear Regulatory Commission and make sure that we are timely and responding to license applications, but they are moving in the right direction. There's been a lot of interface with various laws, whether it's the NEICA (Nuclear Energy Innovation Capabilities Act), or NEIMA (Nuclear Energy Innovation and Modernization Act), two bills that were passed a little while back looking at reforming. And I think there still needs to be improvements and still need to be increase in the resource and capacity of the Nuclear Regulatory Commission, but they're heading in the right direction.We have a good regulator, and that's one of the things that helps us make sure we feel that we can deploy this technology safely here, but also helps us in exporting our technology, where we can say, “Our technology has been licensed by the Nuclear Regulatory Commission,” which has such a high view externally in other countries, that helps us. So I want them to continue to be that safe regulator, but again, they are continuing to work to improve and streamline the process. Hopefully we get toward where we're standardizing, that we don't have to have a lot of interface and we don't — that'll come to the utilities, too — we don't make changes once we've got something approved, so we hopefully can speed up the process from the utility side, and all is well.Human capital (21:48)Are we going to turn out enough nuclear engineers? I imagine that, for a while, that probably seemed like a hard sell to someone who had an interest in science and engineering, to be in this industry versus some others. Probably a little easier sell; are we going to have enough people going into that to build all these reactors?We are going to need to continue to increase it. We’re already seeing the uptick, though, in that area. I'll note: Our office, the office of Nuclear Energy, we've really — going back to the 2010 timeframe — really recognized that we needed to do more in that area, so we actually started investing almost 20 percent of our R&D budget to the universities to hopefully foster that next generation. And in fact, this year we just hit the mark where we've now spent $1 billion since the start of those programs on the universities to make sure we're doing R&D there and getting that next generation of folks out there. It’s something that we've got to continue to focus on to make sure that we do. Because yeah, if we triple, it's going to need a lot more nuclear engineers. But I also note, the thing I'm concerned about also is making sure we have the right trades and all, as well. If we're building these plants, making sure you have the welders, the pipe fitters, and all, that's going to be a big challenge, as well, especially if we're going to start building, say, 10 plants a year. That's a lot of people out there.Fusion forecast (23:12)I’m excited about the prospects for nuclear fusion, and I've talked to people at startups, and it has probably looked as promising as it ever has. How promising is it? How should I think about it as being part of our energy solution going forward, given where we're at? In fact, there are no commercial nuclear fusion reactors right now. Obviously people at startups give a lot of optimistic forecasts. How should I even think about that as being a partial solution in the coming decades? How do you look at it, at least?I think it can be part of the solution in the coming decades. I think some of the changes that's taken place, especially over the last two years where there is more of a change to focus on, not fusion as a science program, but fusion as deployment, as an energy producer, you look at it as an applied energy. I think that's an important change that's occurred over the last two years, and the fusion programs within the Department of Energy are much more focused to that. It's similar to what's happened somewhat with fission. Fission, about 15 years ago, it was government-driven, and you pull along industry, until about 15 years ago you started having industry investing a lot of money and pulling along the government. You're now starting to see that happen in fusion, where people are doing a lot of a private investment, they're pulling along the government, and the government's working to see, how can we use the resources of the government to enable it? So I think it will happen. I don't think fusion is going to be producing electricity to the grid this decade, but I think the vision that's been put forth by the government is their bold, decade-old vision to have a fusion pilot facility sometime within the decade. I think that is feasible. So maybe before the 2050s you can start having fusion generating some of our electricity. I'm a fission person at my heart, but I think fusion is, we're getting much more focused on moving it forward as an electricity source, and that'll help it be able to be deployed sometime here in our lifetime.Faster, Please! is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber.Micro ReadsHow Elon Musk and SpaceX Plan to Colonize Mars - NYTWhat happened to the artificial-intelligence revolution? - Economist The EV trade war between China and the West heats up - Economist Defeated by A.I., a Legend in the Board Game Go Warns: Get Ready for What’s Next - NYTPfizer pins hopes on daily pill to crack market for weight-loss drugs - FTRise of the Restaurant Robots: Chipotle, Sweetgreen and Others Bet on Automation - WSJSaudi Arabia's Trillion-Dollar Makeover Faces Funding Cutbacks - BbergAI Spending: Goldman Strategists Say Big Tech’s Splurge Worries Investors - BbergIt’s Time for AI to Start Making Money for Businesses. Can It? - WSJFaster, Please! is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber. This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode