
In Our Time: Science
Scientific principles, theory, and the role of key figures in the advancement of science.
Latest episodes

Jun 15, 2006 • 42min
Carbon
Melvyn Bragg and guests discuss Carbon. It forms the basis of all organic life and has the amazing ability to bond with itself and a wide range of other elements, forming nearly 10 million known compounds. It is in the food we eat, the clothes we wear, the shampoo we use and the petrol that fuels our cars. Because carbon has the largest range of subtle bonding capabilities, 95% of everything that exists in the universe is made up of carbon atoms that are stuck together. It is an extraordinary element for many reasons: the carbon-nitrogen cycle provides some of the energy produced by the Sun and the stars; it has the highest melting point of all the elements; and its different forms include one of the softest and one of the hardest substances known. What gives carbon its great ability to bond with other atoms? What is the significance of the recent discovery of a new carbon molecule - the C60? What role does carbon play in the modern chemistry of nanotechnology? And how should we address the problem of our diminishing carbon energy sources? With Harry Kroto, Professor of Chemistry at Florida State University; Monica Grady, Professor of Planetary and Space Sciences at the Open University; Ken Teo, Royal Academy of Engineering Research Fellow at Cambridge University.

Jun 1, 2006 • 42min
The Heart
Melvyn Bragg and guests discuss the heart. Aristotle considered the heart to be the seat of thought, reason and emotion. The Roman physician Galen located the seat of the passions in the liver, the seat of reason in the brain, and considered the heart to be the seat of the emotions. It was not until the 17th century that the physician William Harvey wrote in the preface to his thesis On the Motion of the Heart and Blood in Animals, a letter addressed to King Charles I. 'The heart of animals is the foundation of their life, the sovereign of everything within them...from which all power proceeds. The King, in like manner, is the foundation of his kingdom, the sun of the world around him, the heart of the republic, the foundation whence all power, all grace doth flow'. Harvey was probably wise to address the King in this manner, for what he laid out in his groundbreaking text challenged scientific wisdom that had gone unquestioned for centuries about the true function of the heart. Organs had been seen in a hierarchical structure with the heart as the pinnacle. But Harvey transformed the metaphor into something quite different: the heart as a mechanistic pumping device. How had the Ancient Greeks and Islamic physicians understood the heart? What role did the bodily humours play in this understanding? Why has the heart always been seen as the seat of emotion and passion? And why was it that despite Harvey's discoveries about the heart and its function, this had limited implications for medical therapy and advancement? With David Wootton, Anniversary Professor of History at the University of York; Fay Bound Alberti, Research Fellow at the Wellcome Unit for the History of Medicine at the University of Manchester; Jonathan Sawday, Professor of English Studies at the University of Strathclyde.

May 4, 2006 • 42min
Astronomy and Empire
Melvyn Bragg and guests discuss the relationship between astronomy and the British Empire. The 18th century explorer and astronomer James Cook wrote: 'Ambition leads me not only farther than any other man has been before me, but as far as I think it possible for man to go'. Cook's ambition took him to the far reaches of the Pacific and led to astronomical observations which measured the distance of Venus to the Sun with unprecedented accuracy. Cook's ambition was not just personal and astronomical. It represented the colonial ambition of the British Empire which was linked inextricably with science and trade. The discoveries about the Transit of Venus, made on Cook's voyage to Tahiti, marked the beginning of a period of expansion by the British which relied on maritime navigation based on astronomical knowledge. With Simon Schaffer, Professor in History and Philosophy of Science at the University of Cambridge; Kristen Lippincott, former Director of the Royal Observatory, Greenwich; Allan Chapman, Historian of Science at the History Faculty at Oxford University.

Apr 20, 2006 • 42min
Immunisation
Melvyn Bragg and guests discuss the search for immunisation. In 1717, Lady Mary Wortley Montagu, the wife of the British Ambassador to the Ottoman Empire, wrote a letter to her friend describing how she had witnessed the practice of smallpox inoculation in Constantinople. This involved the transfer of material from a smallpox postule into multiple cuts made in a vein. Lady Montagu had lost her brother to smallpox and was amazed that the Middle Eastern practice of inoculation rendered the fatal disease harmless. In Britain, the practice was unknown. Inoculation was an early attempt at creating immunity to disease, but was later dismissed when Edward Jenner pioneered immunisation through vaccination in 1796. Vaccination was hailed a huge success. Napoleon described it as the greatest gift to mankind, but when the British government introduced the compulsory Vaccination Act in 1853, targeted at the poor and the working class, it sparked a mass opposition movement.How did a Gloucestershire country surgeon become known as the father of vaccination? Why did the British government introduce compulsory smallpox vaccination in 1853? What were the consequences of those who opposed it? And how was the disease finally eradicated? With Nadja Durbach, Associate Professor of History at the University of Utah, Chris Dye, Co-ordinator of the World Health Organisation's work on tuberculosis epidemiology, Sanjoy Bhattacharya, Lecturer in the Wellcome Trust Centre for the History of Medicine at UCL

Mar 23, 2006 • 42min
The Royal Society
Melvyn Bragg and guests discuss the formation of the Royal Society. In the 17th century the natural philosopher Francis Bacon heralded the new age of science. The frontispiece to his 1620 edition of the Instauratio Magna depicted a galleon travelling between the metaphorical Pillars of Hercules thought to lie at the Strait of Gibraltar and believed to mark the end of the known world. The image encapsulated Bacon's desire to sail beyond the limits set by Aristotle and the curriculum of the Ancient universities towards the new continent of science. Bacon imagined practical scientists engaged in a collaborative effort to expand knowledge of the natural world. But it was not until the turbulence of the Civil War and Commonwealth years had passed that such a group of scientists would gather together in London for this purpose, and form the Royal Society. Amongst its members were Robert Boyle, Robert Hooke, Christopher Wren and Isaac Newton, who explicitly rejected dogma and insisted on practical experimentation and observation. How was the Royal Society formed against a backdrop of religious and political strife? What was it about the way this group of men worked that allowed each individual to flourish in his own field? How successful was the Royal Society in disseminating the benefits of experimental science and what is its enduring legacy? With Stephen Pumfrey, Senior Lecturer in the History of Science at the University of Lancaster; Lisa Jardine, Professor of Renaissance Studies at Queen Mary, University of London; Michael Hunter, Professor of History at Birkbeck, University of London.

Mar 9, 2006 • 42min
Negative Numbers
Melvyn Bragg and guests discuss negative numbers, a history of mystery and suspicion. In 1759 the British mathematician Francis Maseres wrote that negative numbers "darken the very whole doctrines of the equations and make dark of the things which are in their nature excessively obvious and simple". Because of their dark and mysterious nature, Maseres concluded that negative numbers did not exist, as did his contemporary, William Friend. However, other mathematicians were braver. They took a leap into the unknown and decided that negative numbers could be used during calculations, as long as they had disappeared upon reaching the solution. The history of negative numbers is one of stops and starts. The trailblazers were the Chinese who by 100 BC were able to solve simultaneous equations involving negative numbers. The Ancient Greeks rejected negative numbers as absurd, by 600 AD, the Indians had written the rules for the multiplication of negative numbers and 400 years later, Arabic mathematicians realised the importance of negative debt. But it wasn't until the Renaissance that European mathematicians finally began to accept and use these perplexing numbers. Why were negative numbers considered with such suspicion? Why were they such an abstract concept? And how did they finally get accepted? With Ian Stewart , Professor of Mathematics at the University of Warwick; Colva Roney-Dougal , Lecturer in Pure Mathematics at the University of St Andrews; Raymond Flood , Lecturer in Computing Studies and Mathematics at Kellogg College, Oxford.

Feb 16, 2006 • 28min
Human Evolution
Melvyn Bragg and guests discuss the story of human evolution, which stretches back over six million years. It is not the story of one species but of several diverse species, some of whom walked the Earth at the same time. From the earliest hominids to the early Homo sapiens, there was nothing inevitable about the course of human evolution. But what conditions created the opportunity for diverse human species to thrive? What environmental factors led to the survival of one human species, but contributed to the extinction of so many others? What can the fossil record and the science of genetics tell us about our ancestors? How does the brain make modern man so unique in the natural world? With Steve Jones, Professor of Genetics in the Galton Laboratory at University College London; Fred Spoor, Professor of Evolutionary Anatomy at University College London; Margaret Clegg, Honorary Research Fellow in the Department of Biological Anthropology at University College London.

Jan 19, 2006 • 28min
Relativism
Melvyn Bragg and guests discuss relativism, a philosophy of shifting sands. "Today, a particularly insidious obstacle to the task of educating is the massive presence in our society and culture of that relativism which, recognizing nothing as definitive, leaves as the ultimate criterion only the self with its desires. And under the semblance of freedom it becomes a prison for each one, for it separates people from one another, locking each person into his or her own 'ego'." Pope Benedict XVI, in a speech given in June 2005, showed that the issue of relativism is as contentious today as it was in Ancient Greece, when Plato took on the relativist stance of Protagoras and the sophists. Relativism is a school of philosophical thought which holds to the idea that there are no absolute truths. Instead, truth is situated within different frameworks of understanding that are governed by our history, culture and critical perspective. Why has relativism so radically divided scholars and moral custodians over the centuries? How have its supporters answered to criticisms that it is inherently unethical? And if there are universal standards such as human rights, how do relativists defend culturally specific practices such as honour killings or female infanticide? With Barry Smith, Senior Lecturer in Philosophy at Birkbeck College, University of London; Jonathan Rée, freelance philosopher who holds visiting professorships at the Royal College of Art and Roehampton University; Kathleen Lennon, Senior Lecturer in Philosophy at the University of Hull.

Jan 12, 2006 • 28min
Prime Numbers
Melvyn Bragg and guests discuss prime numbers: 2, 3, 5, 7, 11, 13, 17 … This sequence of numbers goes on literally forever. Recently, a team of researchers in Missouri successfully calculated the highest prime number - it has 9.1 million digits. For nearly two and a half thousand years, since Euclid first described the prime numbers in his book Elements, mathematicians have struggled to write a rule to predict what comes next in the sequence. The Swiss mathematician Leonhard Euler feared that it is "a mystery into which the human mind will never penetrate." But others have been more hopeful... In the middle of the nineteenth century, the German mathematician Bernhard Riemann discovered a connection between prime numbers and a complex mathematical function called the 'zeta function'. Ever since, mathematicians have laboured to prove the existence of this connection and reveal the rules behind the elusive sequence. What exactly are prime numbers and what secrets might they unlock about our understanding of atoms? What are the rules that may govern the prime sequence? And is it possible that the person who proves Riemann's Hypothesis may bring about the collapse of the world financial system? With Marcus du Sautoy, Professor of Mathematics and Fellow of Wadham College at the University of Oxford; Robin Wilson, Professor of Pure Mathematics at the Open University and Gresham Professor of Geometry; Jackie Stedall, Junior Research Fellow in the History of Mathematics at Queen's College, Oxford.

Dec 8, 2005 • 40min
Artificial Intelligence
Melvyn Bragg and guests discuss artificial intelligence. Can machines think? It was a question posed by the mathematician and Bletchley Park code breaker Alan Turing and it is a question still being asked today. What is the difference between men and machines and what does it mean to be human? And if we can answer that question, is it possible to build a computer that can imitate the human mind? There are those who have always had robust answers to the questions that those who seek to create artificial intelligence have posed. In 1949 the eminent neurosurgeon, Professor Geoffrey Jefferson argued that the mechanical mind could never rival a human intelligence because it could never be conscious of what it did: "Not until a machine can write a sonnet or compose a concerto because of thoughts and emotions felt", he declared "and not by the chance fall of symbols, could we agree that machine equals brain - that is, not only write it but know that it had written it." Yet the quest rolled on for machines that were bigger and better at processing symbols and calculating infinite permutations. Who were the early pioneers of artificial intelligence and what drove them to imitate the operations of the human mind? Is intelligence the defining characteristic of humanity? And how has the quest for artificial intelligence been driven by warfare and conflict in the twentieth century? With Jon Agar, Lecturer in the History and Philosophy of Science, University of Cambridge; Alison Adam, Professor of Information Systems, Salford University; Igor Aleksander, Professor of Neural Systems Engineering at Imperial College, University of London.