In Our Time: Science cover image

In Our Time: Science

Latest episodes

undefined
Mar 6, 2008 • 42min

Ada Lovelace

Melvyn Bragg and guests discuss the 19th century mathematician Ada Lovelace. Deep in the heart of the Pentagon is a network of computers. They control the US military, the most powerful army on the planet, but they are controlled by a programming language called Ada. It’s named after Ada Lovelace, the allegedly hard drinking 19th century mathematician and daughter of Lord Byron. In her work with Charles Babbage on a steam driven calculating machine called the Difference Engine, Ada understood, perhaps before anyone else, what a computer might truly be. As such the Difference Engine is the spiritual ancestor of the modern computer.Ada Lovelace has been called many things - the first computer programmer and a prophet of the computer age – but most poetically perhaps by Babbage himself as an ‘enchantress of numbers’.With Patricia Fara, Senior Tutor at Clare College, Cambridge; Doron Swade, Visiting Professor in the History of Computing at Portsmouth University; John Fuegi, Visiting Professor in Biography at Kingston University.
undefined
Feb 21, 2008 • 42min

The Multiverse

Melvyn Bragg and guests will be leaving the studio, the planet and indeed, the universe to take a tour of the Multiverse. If you look up the word ‘universe’ in the Oxford English Dictionary you will find the following definition: “The whole of created or existing things regarded collectively; all things (including the earth, the heavens, and all the phenomena of space) considered as constituting a systematic whole.” That sounds fairly comprehensive as a description of everything, but for an increasing number of physicists and cosmologists the universe is not enough. They talk of a multiverse – literally many universes – to explain aspects of their theory, the character of the universe and the riddle of our existence within it. Indeed, compared to the scope and complexity of the multiverse, the whole of our known reality may be as a speck of sand upon a beach.The idea of a multiverse is still controversial, some argue that it isn’t even science, because it is based on an idea that we may never be able to prove or even see. But what might a multiverse be like, why are physicists and cosmologists increasingly interested in it and is it really scientific to discuss the existence of universes we may never know anything With Martin Rees, President of the Royal Society and Professor of Cosmology and Astrophysics at the University of Cambridge; Fay Dowker, Reader in Theoretical Physics at Imperial College; Bernard Carr, Professor of Mathematics and Astronomy at Queen Mary, University of London
undefined
Jan 24, 2008 • 42min

Plate Tectonics

Melvyn Bragg and guests discuss how the science of plate tectonics revolutionised our understanding of the planet on which we live. America is getting further away from Europe. This is not a political statement but a geological fact. Just as the Pacific is getting smaller, the Red Sea bigger, the Himalayas are still going up and one day the Horn of Africa will be a large island. This is the theory of plate tectonics, a revolutionary idea in 20th century geology that claimed the continents of Earth were dancing to the music of deep time. A dance of incredible slowness, yet powerful enough to throw up the mountains and pour away the oceans.Plate tectonics, the idea that the earth’s surface moved on a carpet of molten magma, constituted a genuine scientific revolution in geology. It explained why mountains appeared and why earth quakes occurred; it explained the curious distribution of fossils across the globe and finally solved the age old conundrum of why continents such as Africa and South America appeared to fit together like a giant jigsaw puzzle. Plate tectonics has made geologists, and many more besides, profoundly re-think what the Earth was, how it worked and how it related to all the things in it. With Richard Corfield, Visiting Senior Lecturer in Earth Sciences at the Open University; Joe Cann, Senior Fellow in the School of Earth and Environment at the University of Leeds; Lynne Frostick, Director of the Hull Environment Research Institute and Professor of Physical Geography at the University of Hull
undefined
Dec 20, 2007 • 42min

The Four Humours

Melvyn Bragg and guests talk about blood, black bile, yellow bile and phlegm. These are the four humours, a theory of disease and health that is among the most influential ideas aver conceived. According to an 11th century Arabic book called the Almanac of Health, an old man went to the doctor complaining of a frigid complexion and stiffness in winter. The doctor, after examining his condition, prescribed a rooster. Being a hot and dry bird it was the perfect tonic for a cold and rheumatic old man. This is medicine by the four humours. The idea that the body is a concoction of these four essential juices is one of the oldest on record. From the Ancient Greeks to the 19th century it explained disease, psychology, habit and personality. When we describe people as being choleric, sanguine or melancholic we are still using the language of the humours today. It also explains why, in the long and convoluted history of medical practice, pigeon livers were an aphrodisiac, blood letting was a form of heroism (and best done in spring) and why you really could be frightened to death. The theory was dismantled from the 17th century but in its belief that the mind and body are intimately connected and that health requires equilibrium the humours retain an influence to this dayWith David Wootton, Anniversary Professor of History at the University of York; Vivian Nutton, Professor of the History of Medicine at University College London; Noga Arikha, Visiting Fellow at the Institut Jean-Nicod in Paris
undefined
Dec 6, 2007 • 42min

Genetic Mutation

Melvyn Bragg and guests discuss mutation in genetics and evolution. When lying mortally ill with cancer, the British geneticist J.B.S. Haldane penned the following lines: Cancer's a Funny Thing:I wish I had the voice of HomerTo sing of rectal carcinoma,Which kills a lot more chaps, in fact,Than were bumped off when Troy was sacked...Haldane knew better than most that many cancers, and many other diseases, are caused by genetic mutation. A mutation is an error in reproduction between one generation and the next as the copying mechanism that allows you to inherit your parent’s genes goes awry. Mutations are almost always bad news for the organism that suffers them and yet mutation is also a giver of life. Without it there would be no natural selection, no evolution and, arguably, no life on this planet. It’s not unreasonable to see life itself as a mutation and to understand this may also hold the key to aging and disease. It is, in the Darwinian view of life, the raw material of evolution.With Steve Jones, Professor of Genetics in the Galton Laboratory, University College London; Adrian Woolfson, lectures in Medicine at Cambridge University; Linda Partridge, Weldon Professor of Biometry at University College LondonTags
undefined
Nov 29, 2007 • 42min

The Fibonacci Sequence

Exploring the origins and significance of the Fibonacci Sequence and its connection to the Golden Ratio. Discussing its impact on mathematics, music, and art, as well as its presence in natural structures like pinecones and sunflowers. Exploring the historical context of Fibonacci's book, its limited circulation, and its impact on Europe. Delving into the relationship between the Fibonacci sequence, Lucas numbers, and the Golden Ratio, and their use in architecture. Examining the symmetrical properties of the five Platonic Solids and their application in designing dice. Exploring the influence of Greek mathematics, Descartes, and Leonardo da Vinci on the Golden Ratio and its intentional incorporation in art, music, and architecture. Discussing the presence of the Fibonacci sequence in plant growth, the spiral of a snail's shell, and the arrangement of petals on flowers.
undefined
Nov 15, 2007 • 42min

Oxygen

Melvyn Bragg discusses the discovery of Oxygen by Joseph Priestley and Antoine Lavoisier. In the late 18th century Chemistry was the prince of the sciences – vital to the economy, it shaped how Europeans fought each other, ate with each other, what they built and the medicine they took. And then, in 1772, the British chemist, Joseph Priestley, stood in front of the Royal Society and reported on his latest discovery: “this air is of exalted nature…A candle burned in this air with an amazing strength of flame; and a bit of red hot wood crackled and burned with a prodigious rapidity. But to complete the proof of the superior quality of this air, I introduced a mouse into it; and in a quantity in which, had it been common air, it would have died in about a quarter of an hour; it lived at two different times, a whole hour, and was taken out quite vigorous.” For the British dissenting preacher, Joseph Priestley, and the French aristocrat, Antoine Lavoisier, Chemistry was full of possibilities and they pursued them for scientific and political ends. But they came to blows over oxygen because they both claimed to have discovered it, provoking a scientific controversy that rattled through the laboratories of France and England until well after their deaths. To understand their disagreement is to understand something about the nature of scientific discovery itself. With Simon Schaffer, Professor in History and Philosophy of Science at the University of Cambridge; Jenny Uglow, Honorary Visiting Professor at the University of Warwick; Hasok Chang, Reader in Philosophy of Science at University College London.
undefined
Oct 4, 2007 • 28min

Antimatter

Melvyn Bragg and guests discuss Antimatter, a type of particle predicted by the British physicist, Paul Dirac. Dirac once declared that “The laws of nature should be expressed in beautiful equations”. True to his word, he is responsible for one of the most beautiful. Formulated in 1928, it describes the behaviour of electrons and is called the Dirac equation. But the Dirac equation is strange. For every question it gives two answers – one positive and one negative. From this its author concluded that for every electron there is an equal and opposite twin. He called this twin the anti-electron and so the concept of antimatter was born.Despite its popularity with Science Fiction writers, antimatter is relatively mundane in physics – we have created antimatter in the laboratory and we even use it in our hospitals. But one fundamental question remains – why isn’t there more antimatter in the universe. Answering that question will involve developing new physics and may take us closer to understanding events at the origin of the universe. With Val Gibson, Reader in High Energy Physics at the University of Cambridge; Frank Close, Professor of Physics at Exeter College, University of Oxford; Ruth Gregory, Professor of Mathematics and Physics at the University of Durham
undefined
Jun 28, 2007 • 42min

The Permian-Triassic Boundary

Melvyn Bragg and guests discuss the Permian-Triassic boundary. 250 million years ago, in the Permian period of geological time, the most ferocious predators on earth were the Gorgonopsians. Up to ten feet in length, they had dog-like heads and huge sabre-like teeth. Mammals in appearance, their eyes were set in the side of their heads like reptiles. They looked like a cross between a lion and giant monitor lizard and were so ugly that they are named after the gorgons from Greek mythology – creatures that turned everything that saw them to stone. Fortunately, you’ll never meet a gorgonopsian or any of their descendants because they went extinct at the end of the Permian period. And they weren’t alone. Up to 95% of all life died with them. It’s the greatest mass extinction the world has ever known and it marks what is called the Permian-Triassic boundary. But what caused this catastrophic juncture in life, what evidence do we have for what happened and what do events like this tell us about the pattern and process of evolution itself?With Richard Corfield, Senior Lecturer in Earth Sciences at the Open University; Mike Benton, Professor of Vertebrate Palaeontology in the Department of Earth Sciences at the University of Bristol; Jane Francis, Professor of Palaeoclimatology at the University of Leeds
undefined
Jun 14, 2007 • 28min

Renaissance Astrology

Melvyn Bragg and guests discuss Renaissance Astrology. In Act I Scene II of King Lear, the ne’er do well Edmund steps forward and rails at the weakness and cynicism of his fellow men:This is the excellent foppery of the world, that,when we are sick in fortune, - often the surfeitof our own behaviour, - we make guilty of ourdisasters the sun, the moon, and the stars: asif we were villains by necessity.The focus of his attack is astrology and the credulity of those who fall for its charms. But the idea that earthly life was ordained in the heavens was essential to the Renaissance understanding of the world. The movements of the heavens influenced many things from the practice of medicine to major political decisions. Every renaissance court had its astrologer including Elizabeth Ist and the mysterious Dr. John Dee who chose the most propitious date for her coronation. But astrologers also worked in the universities and on the streets, reading horoscopes, predicting crop failures and rivalling priests and doctors as pillars of the local community. But why did astrological ideas flourish in the period, how did astrologers interpret and influence the course of events and what new ideas eventually brought the astrological edifice tumbling down? With Peter Forshaw, Lecturer in Renaissance Philosophies at Birkbeck, University of London; Lauren Kassell, Lecturer in the History and Philosophy of Science at the University of Cambridge; and Jonathan Sawday, Professor of English Studies at the University of Strathclyde.

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode