In Our Time: Science cover image

In Our Time: Science

Latest episodes

undefined
Dec 18, 2008 • 42min

The Physics of Time

Melvyn Bragg and guests discuss the physics of time. When writing the Principia Mathematica, Isaac Newton declared his hand on most of the big questions in physics. He outlined the nature of space, explained the motions of the planets and conceived the operation of gravity. He also laid down the law on time declaring: “Absolute, true, and mathematical time, of itself and from its own nature, flows equably without relation to anything external.” For Newton time was absolute and set apart from the universe, but with the theories of Albert Einstein time became more complicated; it could be squeezed and distorted and was different in different places.Time is integral to our experience of things but we find it very difficult to think about. It may not even exist and yet seems written into the existence of absolutely everything. With Jim Al-Khalili, Professor of Theoretical Physics and Chair in the Public Engagement in Science at the University of Surrey; Monica Grady, Professor of Planetary and Space Sciences at the Open University and Ian Stewart, Professor of Mathematics at the University of Warwick.
undefined
Dec 4, 2008 • 42min

Heat

Melvyn Bragg and guests discuss the history of scientific ideas about heat. As anyone who’s ever burnt their hand will testify – heat is a pretty commonplace concept. Cups of coffee cool down, microwaves reheat them, water boils at 100 degrees and freezes on cold winter nights.Behind the everyday experience of hot things lies a complex story of ideas spread across Paris, Manchester and particularly Glasgow. It’s a story of brewing vats and steam engines, of fridges, thermometers and the heat death of the universe. But most importantly, it was the understanding and harnessing of heat that helped make the modern world of industry, engineering and technology.With Simon Schaffer, Professor of History of Science at the University of Cambridge and Fellow of Darwin College; Hasok Chang, Professor of Philosophy of Science at University College London and Joanna Haigh, Professor of Atmospheric Physics at Imperial College London
undefined
Nov 13, 2008 • 42min

Neuroscience

Melvyn Bragg and guests examine the relationship between the mind and the brain as they discuss recent developments in Neuroscience. In the mid-19th century a doctor had a patient who had suffered a stroke. The patient was unable to speak save for one word. The word was ‘Tan’ which became his name. When Tan died, the doctor discovered damage to the left side of his brain and concluded that the ability to speak was housed there. This is how neuroscience used to work – by examining the dead or investigating the damaged – but now things have changed. Imaging machines and other technologies enable us to see the active brain in everyday life, to observe the activation of its cells and the mass firing of its neuron batteries. Our extraordinary new knowledge of how the brain works has challenged concepts of free will and consciousness and opened up new ways of understanding the brain. Yet these new ideas seem to conform to some old ideas such as Freudian Psychoanalysis. But what picture of the brain has emerged, how has our understanding of it changed and what are the implications for understanding that most mysterious and significant of all phenomena – the human mind?With Martin Conway, Professor of Psychology at the University of Leeds; Gemma Calvert, Professor of Applied Neuroimaging at WMG, University of Warwick and David Papineau, Professor of Philosophy of Science at King’s College London.
undefined
Oct 16, 2008 • 42min

Vitalism

Melvyn Bragg and guests discuss Vitalism, an 18th and 19th century quest for the spark of life. On a dreary night in November 1818, a young doctor called Frankenstein completed an experiment and described it in his diary: “I collected the instruments of life around me, that I might infuse a spark of being into the lifeless thing that lay at my feet…By the glimmer of the half-extinguished light, I saw the dull yellow eye of the creature open…”Frankenstein may seem an outlandish tale, but Mary Shelley wrote it when science was alive with ideas about what differentiated the living from the dead. This was Vitalism, a belief that living things possessed some spark of life, some vital principle, perhaps even a soul, that distinguished the quick from the dead and lifted them above dull matter. Electricity was a very real candidate; when an Italian scientist called Luigi Galvani made dead frogs twitch by applying electricity he thought he had found it. Vitalists aimed at unlocking the secret of life itself and they raised questions about what life is that are unresolved to this day. With Patricia Fara, Fellow of Clare College and Affiliated Lecturer in the Department of History and Philosophy of Science at Cambridge University; Andrew Mendelsohn, Senior Lecturer in the History of Science and Medicine at Imperial College, University of London and Pietro Corsi, Professor of the History of Science at the University of Oxford.
undefined
Oct 9, 2008 • 42min

Godel's Incompleteness Theorems

Melvyn Bragg and guests discuss an iconic piece of 20th century maths - Gödel’s Incompleteness Theorems. In 1900, in Paris, the International Congress of Mathematicians gathered in a mood of hope and fear. The edifice of maths was grand and ornate but its foundations, called axioms, had been shaken. They were deemed to be inconsistent and possibly paradoxical. At the conference, a young man called David Hilbert set out a plan to rebuild the foundations of maths – to make them consistent, all encompassing and without any hint of a paradox. Hilbert was one of the greatest mathematicians that ever lived, but his plan failed spectacularly because of Kurt Gödel. Gödel proved that there were some problems in maths that were impossible to solve, that the bright clear plain of mathematics was in fact a labyrinth filled with potential paradox. In doing so Gödel changed the way we understand what mathematics is and the implications of his work in physics and philosophy take us to the very edge of what we can know.With Marcus du Sautoy, Professor of Mathematics at Wadham College, University of Oxford; John Barrow, Professor of Mathematical Sciences at the University of Cambridge and Gresham Professor of Geometry and Philip Welch, Professor of Mathematical Logic at the University of Bristol.
undefined
Jun 19, 2008 • 42min

The Music of the Spheres

Melvyn Bragg and guests discuss the music of the spheres, the elegant and poetic idea that the revolution of the planets generates a celestial harmony of profound and transcendent beauty. In Shakespeare’s The Merchant of Venice the young Lorenzo woos his sweetheart with talk of the stars: “There’s not the smallest orb which thou behold’stBut in his motion like an angel sings,Still quiring to the young-eyed cherubins;Such harmony is in immortal souls;But whilst this muddy vesture of decayDoth grossly close it in, we cannot hear it.”The idea of music of the spheres ran through late antiquity and the medieval period into the Renaissance and its echoes could be heard in astrology and astronomy, in theology, and, of course, in music itself. Influenced by Pythagoras and Plato, it was discussed by Cicero, Boethius, Marcello Ficino and Johannes Kepler It affords us a glimpse into minds for which the universe was full of meaning, of strange correspondences and grand harmonies.With Peter Forshaw, Postdoctoral Fellow at Birkbeck, University of London; Jim Bennett, Director of the Museum of the History of Science at the University of Oxford and Angela Voss, Director of the Cultural Study of Cosmology and Divination at the University of Kent, Canterbury.
undefined
Jun 5, 2008 • 42min

Lysenkoism

Melvyn Bragg and guests delve into the dark world of genetics under Joseph Stalin in discussing the career of Trofim Lysenko. In 1928, as America lurched towards the Wall Street Crash, Joseph Stalin revealed his master plan - nature was to be conquered by science, Russia to be made brutally, glitteringly modern and the world transformed by communist endeavour.Into the heart of this vision stepped Trofim Lysenko, a self-taught geneticist who promised to turn Russian wasteland into a grain-laden Garden of Eden. Today, Lysenko is a byword for fraud but in Stalin’s Russia his outlandish ideas about genetic inheritance and evolution became law. They reveal a world of science distorted by ideology, where ideas were literally a matter of life and death. To disagree with Lysenko risked the gulag and yet he destroyed Soviet Agriculture and damaged, perhaps irreparably, the Soviet Union’s capacity to fight and win the Cold War. With Robert Service, Professor of Russian History at the University of Oxford; Steve Jones, Professor of Genetics at University College London; Catherine Merridale, Professor of Contemporary History at Queen Mary, University of London.
undefined
May 29, 2008 • 42min

Probability

Melvyn Bragg and guests discuss the strange mathematics of probability where heads or tails is a simple question with a far from simple answer. Gambling may be as old as the hills but probability as a mathematical discipline is a relative youngster. Probability is the field of maths relating to random events and, although commonplace now, the idea that you can pluck a piece of maths from the tumbling of dice, the shuffling of cards or the odds in the local lottery is a relatively recent and powerful one. It may start with the toss of a coin but probability reaches into every area of the modern world, from the analysis of society to the decay of an atom. With Marcus du Sautoy, Professor of Mathematics at the University of Oxford; Colva Roney-Dougal, Lecturer in Pure Mathematics at the University of St Andrews; Ian Stewart, Professor of Mathematics at the University of Warwick
undefined
May 8, 2008 • 42min

The Brain

Melvyn Bragg and guests discuss the history of ideas about the human brain. Since time immemorial people have puzzled over the brain and its functions. In the 5th century BC the Greek physician Hippocrates confidently asserted:“Men ought to know that from the brain and from the brain only arise our pleasures, joys, laughter and jests, as well as our sorrows, pains, grieves and tears.” This might suggest that people have never doubted the importance of the brain, but for Aristotle the heart was the ruler of the body and the seat of the soul. Only in the 17th century, with new scientific advances, did the true importance of the brain begin to be appreciated. In 1669 the Danish anatomist, Nicolaus Steno, still lamented that, “the brain, the masterpiece of creation, is almost unknown to us.”How far have our perceptions of how the brain works and what it symbolises changed over the centuries? And, in amongst the matter or our little grey cells, are we still searching for our souls? With Vivian Nutton, Professor of the History of Medicine at University College London; Jonathan Sawday, Professor of English Studies at the University of Strathclyde; Marina Wallace, Professor at the University of the Arts, London, Central St Martin’s College of Art and Design
undefined
Apr 3, 2008 • 42min

The Laws of Motion

Melvyn Bragg and guests discuss Newton’s Laws of Motion. In 1687 Isaac Newton attempted to explain the movements of everything in the universe, from a pea rolling on a plate to the position of the planets. It was a brilliant, vaultingly ambitious and fiendishly complex task; it took him three sentences. These are the three laws of motion with which Newton founded the discipline of classical mechanics and conjoined a series of concepts - inertia, acceleration, force, momentum and mass - by which we still describe the movement of things today. Newton’s laws have been refined over the years – most famously by Einstein - but they were still good enough, 282 years after they were published, to put Neil Armstrong on the Moon. With Simon Schaffer, Professor in History and Philosophy of Science at the University of Cambridge and Fellow of Darwin College; Raymond Flood, University Lecturer in Computing Studies and Mathematics and Senior Tutor at Kellogg College, University of Oxford; Rob Iliffe, Professor of Intellectual History and History of Science at the University of Sussex.

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode