Breaking Math Podcast

Autumn Phaneuf
undefined
Jul 14, 2018 • 34min

29: War

In the United States, the fourth of July is celebrated as a national holiday, where the focus of that holiday is the war that had the end effect of ending England’s colonial influence over the American colonies. To that end, we are here to talk about war, and how it has been influenced by mathematics and mathematicians. The brutality of war and the ingenuity of war seem to stand at stark odds to one another, as one begets temporary chaos and the other represents lasting accomplishment in the sciences. Leonardo da Vinci, one of the greatest western minds, thought war was an illness, but worked on war machines. Feynman and Von Neumann held similar views, as have many over time; part of being human is being intrigued and disgusted by war, which is something we have to be aware of as a species. So what is warfare? What have we learned from refining its practice? And why do we find it necessary?
undefined
Jun 19, 2018 • 34min

28: Bell's Infamous Theorem (Bell's Theorem)

The history of physics as a natural science is filled with examples of when an experiment will demonstrate something or another, but what is often forgotten is the fact that the experiment had to be thought up in the first place by someone who was aware of more than one plausible value for a property of the universe, and realized that there was a way to word a question in such a way that the universe could understand. Such a property was debated during the quantum revolution, and involved Einstein, Polodsky, Rosen, and Schrödinger. The question was 'do particles which are entangled "know" the state of one another from far away, or do they have a sort of "DNA" which infuses them with their properties?' The question was thought for a while to be purely philosophical one until John Stewart Bell found the right way to word a question, and proved it in a laboratory of thought. It was demonstrated to be valid in a laboratory of the universe. So how do particles speak to each other from far away? What do we mean when we say we observe something? And how is a pair of gloves like and unlike a pair of walkie talkies?
undefined
May 14, 2018 • 52min

27: Peer Pressure (Cellular Automata)

The fabric of the natural world is an issue of no small contention: philosophers and truth-seekers universally debate about and study the nature of reality, and exist as long as there are observers in that reality. One topic that has grown from a curiosity to a branch of mathematics within the last century is the topic of cellular automata. Cellular automata are named as such for the simple reason that they involve discrete cells (which hold a (usually finite and countable) range of values) and the cells, over some field we designate as "time", propagate to simple automatic rules. So what can cellular automata do? What have we learned from them? And how could they be involved in the future of the way we view the world?
undefined
Apr 26, 2018 • 48min

26: Infinity Shades of Grey (Paradox)

A paradox is characterized either by a logical problem that does not have a single dominant expert solution, or by a set of logical steps that seem to lead somehow from sanity to insanity. This happens when a problem is either ill-defined, or challenges the status quo. The thing that all paradoxes, however, have in common is that they increase our understanding of the phenomena which bore them. So what are some examples of paradox? How does one go about resolving it? And what have we learned from paradox?--- This episode is sponsored by · Anchor: The easiest way to make a podcast.  https://anchor.fm/appSupport this podcast: https://anchor.fm/breakingmathpodcast/support
undefined
Apr 13, 2018 • 45min

25: Pandemic Panic (Epidemiology)

The spectre of disease causes untold mayhem, anguish, and desolation. The extent to which this spectre has yielded its power, however, has been massively curtailed in the past century. To understand how this has been accomplished, we must understand the science and mathematics of epidemiology. Epidemiology is the field of study related to how disease unfolds in a population. So how has epidemiology improved our lives? What have we learned from it? And what can we do to learn more from it?
undefined
Mar 7, 2018 • 45min

24: Language and Entropy (Information Theory in Language)

Information theory was founded in 1948 by Claude Shannon, and is a way of both qualitatively and quantitatively describing the limits and processes involved in communication. Roughly speaking, when two entities communicate, they have a message, a medium, confusion, encoding, and decoding; and when two entities communicate, they transfer information between them. The amount of information that is possible to be transmitted can be increased or decreased by manipulating any of the aforementioned variables. One of the practical, and original, applications of information theory is to models of language. So what is entropy? How can we say language has it? And what structures within language with respect to information theory reveal deep insights about the nature of language itself?--- This episode is sponsored by · Anchor: The easiest way to make a podcast.  https://anchor.fm/appSupport this podcast: https://anchor.fm/breakingmathpodcast/support
undefined
Jan 15, 2018 • 53min

23: Don't Touch My Circles! (Geometry)

In the study of mathematics, there are many abstractions that we deal with. For example, we deal with the notion of a real number with infinitesimal granularity and infinite range, even though we have no evidence for this existing in nature besides the generally noted demi-rules 'smaller things keep getting discovered' and 'larger things keep getting discovered'. In a similar fashion, we define things like circles, squares, lines, planes, and so on. Many of the concepts that were just mentioned have to do with geometry; and perhaps it is because our brains developed to deal with geometric information, or perhaps it is because geometry is the language of nature, but there's no doubt denying that geometry is one of the original forms of mathematics. So what defines geometry? Can we make progress indefinitely with it? And where is the line between geometry and analysis?--- This episode is sponsored by · Anchor: The easiest way to make a podcast.  https://anchor.fm/appSupport this podcast: https://anchor.fm/breakingmathpodcast/support
undefined
Dec 23, 2017 • 57min

22: Incomplet (Gödel, Escher, Bach: an Eternal Golden Braid: Chapter IV Discussion)

Dive into the fascinating world of symbolism and mathematics inspired by Gödel, Escher, Bach. Explore the Sanskrit concept of 'maya' and its implications on formal logic. Engage with thought-provoking themes of self-reference and paradoxes that challenge our understanding of mathematical truth. Discover the essence of isomorphism through relatable examples and its significance in both art and technology. Enjoy a whimsical discussion on the relationship between music and philosophical concepts, all while navigating the quirks of formal systems.
undefined
Dec 4, 2017 • 40min

21: Einstein's Biggest Idea (General Relativity)

Some see the world of thought divided into two types of ideas: evolutionary and revolutionary ideas. However, the truth can be more nuanced than that; evolutionary ideas can spur revolutions, and revolutionary ideas may be necessary to create incremental advancements. General relativity is an idea that was evolutionary mathematically, revolutionary physically, and necessary for our modern understanding of the cosmos. Devised in its full form first by Einstein, and later proven correct by experiment, general relativity gives us a framework for understanding not only the relationship between mass and energy and space and time, but topology and destiny. So why is relativity such an important concept? How do special and general relativity differ? And what is meant by the equation G=8πT?--- This episode is sponsored by · Anchor: The easiest way to make a podcast.  https://anchor.fm/appSupport this podcast: https://anchor.fm/breakingmathpodcast/support
undefined
Nov 18, 2017 • 40min

20: Rational (Ratios)

From MC²’s statement of mass energy equivalence and Newton’s theory of gravitation to the sex ratio of bees and the golden ratio, our world is characterized by the ratios which can be found within it. In nature as well as in mathematics, there are some quantities which equal one another: every action has its equal and opposite reaction, buoyancy is characterized by the displaced water being equal to the weight of that which has displaced it, and so on. These are characterized by a qualitative difference in what is on each side of the equality operator; that is to say: the action is equal but opposite, and the weight of water is being measured versus the weight of the buoyant object. However, there are some formulas in which the equality between two quantities is related by a constant. This is the essence of the ratio. So what can be measured with ratios? Why is this topic of importance in science? And what can we learn from the mathematics of ratios?--- This episode is sponsored by · Anchor: The easiest way to make a podcast.  https://anchor.fm/appSupport this podcast: https://anchor.fm/breakingmathpodcast/support

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app