

Aging-US
Aging-US Podcast
Aging-US is dedicated to advancing our understanding of the biological mechanisms that drive aging and the development of age-related diseases. Our mission is to serve as a platform for high-quality research that uncovers the cellular, molecular, and systemic processes underlying aging, and translates these insights into strategies to extend healthspan and delay the onset of chronic disease.
Read about the Aging (Aging-US) Scientific Integrity Process: https://aging-us.com/scientific-integrity
Read about the Aging (Aging-US) Scientific Integrity Process: https://aging-us.com/scientific-integrity
Episodes
Mentioned books

Mar 2, 2025 • 5min
Radiotherapy Impacts Survival Differently in Glioblastoma and Low-Grade Glioma
BUFFALO, NY — March 3, 2025 — A new #research paper was #published in Aging (Aging-US) on February 27, 2025, as the #cover of Volume 17, Issue 2, titled “Variability in radiotherapy outcomes across cancer types: a comparative study of glioblastoma multiforme and low-grade gliomas.”
An international research team, led by first author Alexander Veviorskiy from Insilico Medicine AI Limited, Abu Dhabi, UAE, and corresponding author Morten Scheibye-Knudsen from the Center for Healthy Aging, University of Copenhagen, investigated how radiotherapy affects survival in different types of cancer, with a special focus on glioblastoma multiforme (GBM) and low-grade gliomas (LGG). Their findings reveal that radiotherapy has opposite effects in GBM and LGG patients. The study highlights key biological differences between these brain cancer types, emphasizing the need for personalized treatment strategies.
Radiotherapy is a standard treatment for many tumors, but its effectiveness varies widely depending on the type of cancer. The researchers began by analyzing data from 32 cancer types using information from The Cancer Genome Atlas (TCGA). They then focused on glioblastoma multiforme (GBM) and low-grade gliomas (LGG), two types of brain cancer with distinct biological behaviors. GBM is an aggressive cancer with poor survival rates, whereas LGG progresses more slowly and often has a better prognosis.
“GBM and LGG are particularly interesting to study together because GBM often originates from a preexisting LGG, representing a progression from a lower-grade to a higher-grade malignancy.”
The results revealed a striking contrast: patients with GBM who received radiotherapy lived longer, whereas those with LGG had shorter survival times after treatment. To understand the reasons behind this, the researchers analyzed gene expression and signaling pathways. They identify several biological processes that may influence radiotherapy outcomes.
For example, GBM tumors have weaker DNA repair mechanisms, making them more vulnerable to radiation-induced damage, which allows radiotherapy to effectively kill cancer cells. In contrast, LGG tumors have stronger DNA repair systems, helping cells survive radiation better and potentially reducing the treatment’s effectiveness. Additionally, differences in immune system activity and genetic mutations—such as EGFR alterations—were linked to worse survival in LGG patients who received radiotherapy.
These findings highlight the need for a more personalized approach to treating brain cancer. The study proposes that a universal approach to radiotherapy is not appropriate, particularly for patients with LGG. Instead, personalized treatment strategies based on genetic and molecular characteristics could improve patient survival outcomes. The research also raises the possibility of combining radiotherapy with targeted therapies, such as immune-boosting therapies or DNA repair inhibitors, to enhance its effectiveness.
In conclusion, this study highlights the complexity of brain cancer treatment and the need for further research to refine therapeutic strategies. By understanding the molecular and genetic differences between the different types of cancers, more effective and personalized approaches can be developed to improve survival and quality of life for brain cancer patients.
DOI - https://doi.org/10.18632/aging.206212
Corresponding author - Morten Scheibye-Knudsen - mscheibye@sund.ku.dk
Video short - https://www.youtube.com/watch?v=j91rzDJHXTE
Visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Mar 2, 2025 • 4min
Toxic Environmental Pollutants Linked to Faster Aging and Health Risks in U.S. Adults
BUFFALO, NY — March 5, 2025 — A new #research paper was #published in Aging (Aging-US) on February 11, 2025, Volume 17, Issue 2, titled “Exposome-wide association study of environmental chemical exposures and epigenetic aging in the national health and nutrition examination survey.”
First author Dennis Khodasevich and corresponding author Andres Cardenas from Stanford University, and colleagues from other U.S. institutions, studied how exposure to harmful chemicals in the environment affects aging. Using data from the National Health and Nutrition Examination Survey (NHANES), they discovered that cadmium, lead, and cotinine are linked to faster biological aging, a process that can increase the risk of age-related diseases.
The study analyzed data from 2,346 U.S. adults aged 50 to 84 who participated in a national health survey. Researchers tested their blood and urine for 64 different chemicals, including metals, pesticides, and industrial pollutants. They assessed how these exposures influenced eight different epigenetic aging markers—biological clocks that measure how fast a person’s body is aging at the DNA level.
"We harnessed data from the National Health and Nutrition Examination Survey 1999-2000 and 2001-2002 cycles to examine exposome-wide associations between environmental exposures and epigenetic aging."
The strongest effects were linked to cadmium, a toxic metal found in cigarette smoke and some foods. People with higher levels of cadmium in their blood showed signs of accelerated aging. Higher levels of cotinine, a chemical related to tobacco exposure, were also linked to increased biological age, reinforcing the harmful effects of smoking. Additionally, lead exposure, a heavy metal found in old paint and contaminated water, was also associated with faster aging.
The researchers also found that some pollutants, including a type of PCB (PCB118) and a type of dioxin (HpCDD), were linked to slower biological aging. However, it is unclear if this fact is beneficial, as past research shows that slower aging in some cases can still be linked to health risks.
This study is one of the largest to investigate how pollution affects the aging process. Unlike previous research that focused on only a few chemicals, it examined a wide range of pollutants in a diverse group of people. The findings suggest that everyday exposure to toxic substances can speed up aging at the cellular level, increasing the risk of age-related diseases.
In summary, these findings raise concerns about how widespread environmental contaminants may accelerate aging and contribute to chronic diseases such as heart disease, cancer, and cognitive decline. Reducing exposure to toxic substances like cadmium and lead—found in cigarettes, polluted air, and contaminated food—could help slow biological aging and improve long-term health. These insights highlight the need for stronger environmental health policies to protect individuals from premature aging and disease.
DOI - https://doi.org/10.18632/aging.206201
Corresponding author - Andres Cardenas - andresca@stanford.edu
Video short - https://www.youtube.com/watch?v=WcL-K399a7M
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Feb 23, 2025 • 5min
EpiAge: A New Test to Measure Biological Age Using Saliva or Blood
BUFFALO, NY — February 24, 2025 — A new #researchpaper was #published in Aging (Aging-US) on January 22, 2025, in Volume 17, Issue 1, titled “EpiAge: a next-generation sequencing-based ELOVL2 epigenetic clock for biological age assessment in saliva and blood across health and disease.”
The research team, experts from both industry (EpiMedTech Global, HKG Epitherapeutics Ltd) and academic institutions (McGill University, Oxford University, University of Catania, and the Research Institute-IRCCS), led by first author David Cheishvili and corresponding author Moshe Szyf, have developed EpiAgePublic, a new method to estimate biological age using only three key DNA sites in the ELOVL2 gene, a well-known marker of aging. Unlike traditional methods that require analyzing thousands of DNA regions, this approach simplifies the process while maintaining accuracy. Their findings show that EpiAgePublic performs as well as, or even better than, more complex models in predicting biological age in diverse populations.
Biological age measures how fast or slow a person’s body is aging. It can be different from chronological age and is influenced by genetics, lifestyle, and health conditions. Understanding biological aging can help researchers and clinicians identify age-related diseases like Alzheimer’s disease and develop anti-aging treatments. However, many existing biological age tests rely on expensive and complicated processes. The EpiAgePublic model overcomes these challenges with a simple yet powerful approach.
The study analyzed data from over 4,600 individuals across different health conditions, including Alzheimer’s disease and HIV. It confirmed that EpiAgePublic accurately tracks aging patterns and can identify factors such as chronic illness or stress that accelerate the aging process. Importantly, the researchers demonstrated that the test works well using saliva samples, offering a convenient and non-invasive alternative to blood-based tests. This makes it easier to conduct epigenetic age testing in both clinical and research settings.
“The simplicity and precision of epiAgePublic, designed for compatibility with next-generation sequencing (NGS) technologies, mark a significant step forward in the field of epigenetic research.”
The ability to measure epigenetic aging with a quick and cost-effective test has significant implications for healthcare, longevity research, and personalized medicine. This method could be used in hospitals, wellness clinics, and longevity studies to track aging and evaluate the effectiveness of anti-aging interventions. It may also help clinicians detect early signs of aging-related diseases, allowing for better preventive care.
Finally, the study’s findings highlight the advantages of next-generation sequencing in epigenetic research, leading the way for more precise and accessible aging diagnostics. Future research will explore how this model can be expanded to other health conditions and used in routine medical practice.
DOI - https://doi.org/10.18632/aging.206188
Corresponding author - Moshe Szyf - moshe.szyf@epimedtech.com
Author interview - https://www.youtube.com/watch?v=NA8Vctks0gY
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206188
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Feb 22, 2025 • 5min
Scientists Identify Age-Invariant Genes That Could Transform Aging Research
BUFFALO, NY — February 26, 2025 — A new #research paper was #published in Aging (Aging-US) on January 27, 2025, in Volume 17, Issue 1, titled “Age-invariant genes: multi-tissue identification and characterization of murine reference genes.”
Aging is a process driven by changes in gene activity, but researchers from Yale University School of Medicine and Altos Labs, led by first author John T. González and corresponding author Albert T. Higgins-Chen, have identified a set of genes that remain unchanged throughout the aging process. This discovery could improve the accuracy of aging research and provide insights into why some genes stay unchanged while others decline.
“Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan.”
The study looked at gene activity in 17 different tissues in mice, from 1 month old to over 21 months old. Scientists used advanced bioinformatic analysis methods to analyze RNA sequencing data. They found nine genes that stayed the same across all tissues, as well as other genes that remained stable in specific tissues. These genes are usually shorter and have special DNA regions called CpG islands, which may help cells stay healthy and resist aging. Their stability throughout aging was confirmed by analyzing different datasets and using RT-qPCR.
One of the most significant findings is that these stable genes are linked to essential cellular functions, such as mitochondrial activity and protein maintenance. This challenges the common belief that all aspects of aging involve gene dysregulation. Instead, the findings suggest that some cellular processes may naturally resist aging, leading the way for new research on longevity and potential anti-aging therapies.
“Biological processes that change with age and those that resist age-related dysregulation are two sides of the same coin, and both will need to be investigated to fully understand aging.”
Another key finding is that commonly used reference genes, such as GAPDH and ACTB, fluctuate with age, making them unreliable for aging studies. No single classical reference gene was found to be stable across all tissues. Researchers often use these reference genes as a control to measure gene activity, but if their expression changes over time, it can lead to inaccurate results. By identifying new, stable reference genes, this study provides scientists with better tools for studying aging-related diseases, regenerative medicine, and longevity science.
Understanding how certain genes remain unchanged throughout life suggests that they may play a protective role in aging and could potentially be used to develop treatments that slow down age-related decline. While further research is needed, this discovery sets a new standard for measuring gene activity in aging studies and could have a significant impact on aging research and medicine.
DOI - https://doi.org/10.18632/aging.206192
Corresponding author - Albert T. Higgins-Chen - a.higginschen@yale.edu
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
Media Contact
18009220957
MEDIA@IMPACTJOURNALS.COM

Feb 22, 2025 • 54min
Longevity & Aging Series (S3, E1): Dr. Yu-Xuan Lyu
In the Season 3 premiere of the Longevity & Aging Series, Dr. Yu-Xuan Lyu from Southern University of Science and Technology (Shenzhen, China) joins host Dr. Evgeniy Galimov to discuss his co-authored research paper, featured as the cover for Aging (Aging-US) Volume 16, Issue 20, titled “Longevity biotechnology: bridging AI, biomarkers, geroscience, and clinical applications for healthy longevity.”
#aging #author #interview #series #biotechnology #ai #artificialintelligence #longevity #healthspan #lifespan #oa #openscience #peerreview #journal #publication #publishing #meded #agingshort #video
DOI - https://doi.org/10.18632/aging.206135
Corresponding authors - Yu-Xuan Lyu - lvyx@sustech.edu.cn, Alex Zhavoronkov - alex@insilico.com, Morten Scheibye-Knudsen - mscheibye@sund.ku.dk, and Daniela Bakula - bakula@sund.ku.dk
Video interview - https://www.youtube.com/watch?v=VUfNxWdBV5k
Video short - https://www.youtube.com/watch?v=Hpfe5WJ5g7I
Abstract
The recent unprecedented progress in ageing research and drug discovery brings together fundamental research and clinical applications to advance the goal of promoting healthy longevity in the human population. We, from the gathering at the Aging Research and Drug Discovery Meeting in 2023, summarised the latest developments in healthspan biotechnology, with a particular emphasis on artificial intelligence (AI), biomarkers and clocks, geroscience, and clinical trials and interventions for healthy longevity. Moreover, we provide an overview of academic research and the biotech industry focused on targeting ageing as the root of age-related diseases to combat multimorbidity and extend healthspan. We propose that the integration of generative AI, cutting-edge biological technology, and longevity medicine is essential for extending the productive and healthy human lifespan.
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206135
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Keywords - aging, biotechnology, artificial intelligence, healthy longevity
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
Media Contact
18009220957
MEDIA@IMPACTJOURNALS.COM

Feb 19, 2025 • 12min
Behind the Study: EpiAge: NGS-Based ELOVL2 Epigenetic Clock for Biological Age Assessment
Dr. Moshe Szyf from EpiMedTech Global in Singapore discusses a research paper he co-authored that was published in Volume 17, Issue 1 of Aging (Aging-US), entitled “EpiAge: a next-generation sequencing-based ELOVL2 epigenetic clock for biological age assessment in saliva and blood across health and disease.”
DOI - https://doi.org/10.18632/aging.206188
Corresponding author - Moshe Szyf - moshe.szyf@epimedtech.com
Video interview - https://www.youtube.com/watch?v=NA8Vctks0gY
Video transcript - https://www.aging-us.com/interviews/epiage-ngs-based-elovl2-epigenetic-clock-for-biological-age-assessment
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206188
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Keywords - aging, epigenetic clock, elovl2, next-generation sequencing, EpiAge, Alzheimer's disease
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Feb 19, 2025 • 4min
Inflammation and Metabolic Syndrome Linked to Benign Prostatic Hyperplasia
Discover how inflammation and metabolic syndrome are intricately linked to benign prostatic hyperplasia (BPH) in aging men. Researchers reveal that specific inflammatory markers in the blood may drive the development of BPH, especially in those with metabolic issues. The discussion emphasizes possible lifestyle changes and anti-inflammatory treatments that could ease painful urination. This fascinating insight sheds light on a common condition affecting millions, showcasing the importance of metabolic health in prostate well-being.

Feb 18, 2025 • 5min
Senolytic ABT-263 Reduces Radiation-Induced Gastrointestinal Cancer
BUFFALO, NY—February 18, 2025 — A new #research paper was #published by Aging (Aging-US) on January 8, 2025, in Volume 17, Issue 1, titled “Senolytic agent ABT-263 mitigates low- and high-LET radiation-induced gastrointestinal cancer development in Apc1638N/+ mice.”
Researchers Kamendra Kumar, Bo-Hyun Moon, Santosh Kumar, Jerry Angdisen, Bhaskar V.S. Kallakury, Albert J. Fornace Jr., and Shubhankar Suman from Georgetown University Medical Center explored whether a drug called ABT-263 could help reduce the risk of gastrointestinal (GI) cancer caused by radiation exposure. Their findings suggest that ABT-263, a senolytic agent, helps eliminate harmful aging cells in the gut, reducing inflammation and lowering cancer risk in mice. These results could lead to potential treatments for people exposed to radiation, including cancer patients and astronauts.
Radiation exposure, whether from medical treatments, environmental sources, or space travel, can damage cells and increase the risk of GI cancer. One key factor in this process is cellular senescence, where damaged cells stop dividing but continue to release harmful molecules that promotes tumor growth. This study tested whether ABT-263, a drug designed to remove these aged cells, could lower cancer risk in a mouse model of GI cancer.
In this study, researchers exposed mice to radiation and found that it increased the number of damaged cells in their intestines, leading to more tumors. However, when the mice were given ABT-263, the number of harmful cells decreased, and they developed fewer tumors. The drug also reduced inflammation and blocked signals that promote cancer growth.
“Oral administration of ABT-263 in Apc1638N/+ mice resulted in a significant reduction in low-LET IR-induced intestinal tumor burden at 5 months post-exposure."
These findings highlight the potential of senolytic drugs like ABT-263 as a preventive treatment for radiation-induced cancers. This approach could be especially beneficial for cancer patients undergoing radiation therapy, astronauts exposed to cosmic radiation, and individuals at risk from environmental sources such as radon gas.
However, while ABT-263 showed promise, it also has known side effects, including reduced platelet counts, which can impact blood clotting. Future research will focus on optimizing senolytic treatments to ensure they are both safe and effective for human use. Scientists are also exploring alternative drugs and combination therapies that might offer the same benefits with fewer risks.
This study provides strong evidence that removing senescent cells could help prevent radiation-related GI cancer. With further research, senolytic drugs may become an important tool in protecting at-risk populations from the long-term effects of radiation exposure.
DOI - https://doi.org/10.18632/aging.206183
Corresponding author - Shubhankar Suman - ss2286@georgetown.edu
Video short - https://www.youtube.com/watch?v=M_WEht4vy4w
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Feb 17, 2025 • 8min
A New Approach to Healing Aging Skin: Insights from Senolytic Research
Imagine a simple topical treatment that could help aging skin heal faster, reducing recovery time from wounds and even improving skin quality. Scientists may have found exactly that. A recent study, published in Aging, reveals that a compound called ABT-263 can eliminate aging cells in the skin, boosting its ability to regenerate.
Understanding How Aging Affects Skin Healing
Aging affects the skin’s structure and function, leading to a reduced ability to heal from wounds. Scientists have long suspected that senescent cells, also known as “zombie cells,” play a major role in this decline. These cells stop dividing but refuse to die, accumulating in tissues and releasing inflammatory molecules that impair the body’s natural repair processes.
Various studies have explored senolytics, a class of drugs designed to eliminate these aging cells and restore tissue function. While these drugs have shown promise in treating diseases like osteoporosis and fibrosis, their impact on skin regeneration and wound healing has been less studied. A new study titled “Topical ABT-263 treatment reduces aged skin senescence and improves subsequent wound healing” now suggests that a topical application of the senolytic ABT-263 could significantly improve wound healing in older individuals.
Full blog - https://aging-us.org/2025/02/a-new-approach-to-healing-aging-skin-insights-from-senolytic-research/
Paper DOI - https://doi.org/10.18632/aging.206165
Corresponding author - Daniel S. Roh - droh@bu.edu
Video short - https://www.youtube.com/watch?v=AKS7sZyEChg
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206165
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Keywords - aging, senolytic, senescence, wound healing, ABT-263
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Feb 12, 2025 • 4min
DNA Methylation Clocks May Require Tissue-Specific Adjustments for Accurate Aging Estimates
Discover how DNA methylation clocks estimate biological age through chemical changes in DNA. The discussion reveals that these clocks are reliable for blood samples but may falter in other tissues like lungs and kidneys. Researchers explore the implications of tissue-specific aging clocks for better medical diagnostics. Learn about the surprising variations in biological age estimates across different human tissues and how lifestyle choices impact these measurements.