Aging-US cover image

Aging-US

Latest episodes

undefined
Oct 24, 2024 • 3min

New Model to Study Macrophage Aging Mechanisms

BUFFALO, NY- October 24, 2024 – A new #research paper was #published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 19 on October 3, 2024, entitled “A new model and precious tool to study molecular mechanisms of macrophage aging.” As highlighted in the abstract, the accumulation of senescent cells, marked by a senescence-associated secretory phenotype (SASP), plays a role in chronic inflammation and age-related diseases (ARD). During aging, macrophages can develop a senescent-like phenotype with altered functions, promoting the buildup of senescent cells. In the context of aging and ARD, controlling the resolution of inflammation and preventing chronic inflammation—particularly by targeting macrophages—should be a priority. In their paper, researchers Rémy Smith, Kévin Bassand, Ashok Dussol, Christophe Piesse, Eric Duplus, and Khadija El Hadri from Sorbonne Université in Paris and Université Sorbonne Paris Nord in Bobigny, France, developed an in vitro model of murine peritoneal macrophage aging. Using this model, they demonstrated that chronic treatment with CB3, a thioredoxin-1 mimetic anti-inflammatory peptide, completely prevents the increase of p21CIP1 and allows day 14 macrophages to maintain their proliferative activity. "We describe a new model of macrophage aging with a senescence-like phenotype associated with inflammatory, metabolic and functional perturbations.” DOI - https://doi.org/10.18632/aging.206124 Corresponding authors - Eric Duplus - eric.duplus@sorbonne-universite.fr, and Khadija El Hadri - khadija.zegouagh@sorbonne-universite.fr Video short - https://www.youtube.com/watch?v=LfN78LR-CYU Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206124 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, macrophage, inflammation, senescence, thioredoxin-1 mimetic peptide About Aging-US The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population. The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.) Please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
undefined
Oct 23, 2024 • 37min

Longevity & Aging Series (S2, E3): Dr. Jon Berner

In this installment of the Longevity & Aging Series, Dr. Jon Berner from the Woodinville Psychiatric Associates in Woodinville, WA, joined host Dr. Evgeniy Galimov to discuss a research paper he co-authored that was published in Volume 16, Issue 14 of Aging (Aging-US), entitled, “mTORC1 activation in presumed classical monocytes: observed correlation with human size variation and neuropsychiatric disease.” DOI - https://doi.org/10.18632/aging.206033 Corresponding author - Jon Berner - jonbernermd@gmail.com Video interview - https://www.youtube.com/watch?v=45L89MaJ7qA Abstract Background: Gain of function disturbances in nutrient sensing are likely the largest component in human age-related disease. Mammalian target of rapamycin complex 1 (mTORC1) activity affects health span and longevity. The drugs ketamine and rapamycin are effective against chronic pain and depression, and both affect mTORC1 activity. Our objective was to measure phosphorylated p70S6K, a marker for mTORC1 activity, in individuals with psychiatric disease to determine whether phosphorylated p70S6K could predict medication response. Methods: Twenty-seven females provided blood samples in which p70S6K and phosphorylated p70S6K were analyzed. Chart review gathered biometric measurements, clinical phenotypes, and medication response. Questionnaires assessed anxiety, depression, autism traits, and mitochondrial dysfunction, to determine neuropsychiatric disease profiles. Univariate and multivariate statistical analyses were used to identify predictors of medication response. Results: mTORC1 activity correlated highly with both classical biometrics (height, macrocephaly, pupil distance) and specific neuropsychiatric disease profiles (anxiety and autism). Across all cases, phosphorylated p70S6K was the best predictor for ketamine response, and also the best predictor for rapamycin response in a single instance. Conclusions: The data illustrate the importance of mTORC1 activity in both observable body structure and medication response. This report suggests that a simple assay may allow cost-effective prediction of medication response. Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206033 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, ketamine, lithium, monocyte, mTORC1, rapamycin About Aging-US The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population. The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.) Please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
undefined
Oct 22, 2024 • 13min

Tribute to Dr. Mikhail (Misha) Blagosklonny

It is with great sadness and heavy heart that we announce the recent passing of Dr. Mikhail (Misha) V. Blagosklonny, our beloved Editor-in-Chief. Misha succumbed to metastatic lung cancer after a courageous battle. Dr. Blagosklonny will be remembered as a brilliant and extraordinary scientist who dedicated his life to science. He was a visionary thinker, who made highly original contributions to cancer and aging research that were often ahead of their time. Dr. Blagosklonny was born into a family of scientists. His mother, Professor of Medicine Yanina V. Blagosklonnaya, specialized in endocrinology and was a talented teacher, mentoring several generations of medical students. His father, Professor Vladimir M. Dilman, was a brilliant gerontologist, endocrinologist and oncologist, known for being a very charismatic person. He was the first person to encourage Misha to think about nature, aging, and philosophy. Misha was a theorist by nature. While in school, he was deeply interested in physics and dreamed of becoming a theoretical physicist. Eventually, he chose biology, driven to study aging and age-related diseases, including cancer. He started as an experimentalist, but over the years, he became a theoretical biologist. In a way, his dream came true. The full tribute to Misha - https://www.aging-us.com/news-room/tribute-to-dr-mikhail-misha-blagosklonny
undefined
Oct 22, 2024 • 3min

Senolytics Dasatinib and Quercetin for Prevention of Pelvic Organ Prolapse in Mice

BUFFALO, NY- October 22, 2024 – A new #research paper was #published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 19 on September 26, 2024, entitled, “Use of the senolytics dasatinib and quercetin for prevention of pelvic organ prolapse in a mouse animal model.” Pelvic organ prolapse is a common condition among women in the U.S., with a 13% estimated risk of requiring surgery by age 80. Senolytic agents like dasatinib and quercetin (D+Q) target age-related cellular senescence and reduce senescent cell activity in various disease processes. In their paper, researchers Erryn Tappy, Haolin Shi, Jessica Pruszynski, and Maria Florian-Rodriguez from the University of Texas Southwestern Medical Center, Department of Obstetrics and Gynecology in Dallas, utilized a mouse model of pelvic organ prolapse, Fibulin-5 knockout (Fbln-5-/-) mice, to assess the ability of D+Q to prevent development of prolapse. The D+Q injections administered did not result in significant differences in prolapse development but did reduce cellular senescence markers in Fbln-5-/- mice. This suggests senolytic agents may help mitigate the role of cellular senescence in tissue dysfunction associated with prolapse. The researchers suggest that further studies are needed to determine optimal timing, dosage, and delivery of senolytics for prolapse prevention. "This study represents one of the first to evaluate the impact of senolytic agents D+Q on the clinical development of pelvic organ prolapse and expression of proteins associated with cellular senescence in a mouse model.” DOI - https://doi.org/10.18632/aging.206120 Corresponding author - Maria Florian-Rodriguez - Maria.Florian-Rodriguez@UTSouthwestern.edu Video short - https://www.youtube.com/watch?v=kTQfjhubx_4 Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206120 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, pelvic organ prolapse, cellular senescence, senolytic agents, animal model About Aging-US The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population. The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.) Please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
undefined
Oct 17, 2024 • 6min

Baseline Variations and Mechanical Loading-Induced Bone Formation in Mice through Proteomics

Bone mass declines with age, and the anabolic effects of skeletal loading decrease. While much research has focused on gene transcription, how bone ages and loses its mechanoresponsiveness at the protein level remains unclear. Researchers Christopher J. Chermside-Scabbo, John T. Shuster, Petra Erdmann-Gilmore, Eric Tycksen, Qiang Zhang, R. Reid Townsend, Matthew J. Silva from Washington University School of Medicine and Washington University in St. Louis, MO, share their findings which underscore the need for complementary protein-level assays in skeletal biology research. On October 12, 2024, their research paper was published as the cover of Aging (listed by MEDLINE/PubMed as “Aging (Albany NY)” and “Aging-US” by Web of Science), Volume 16, Issue 19, entitled, “A proteomics approach to study mouse long bones: examining baseline differences and mechanical loading-induced bone formation in young-adult and old mice.” Full blog - https://aging-us.org/2024/10/exploring-baseline-variations-and-mechanical-loading-induced-bone-formation-in-young-adult-and-aging-mice-through-proteomics/ Paper DOI - https://doi.org/10.18632/aging.206131 Corresponding author - Christopher J. Chermside-Scabbo - ccherms@wustl.edu Video short - https://www.youtube.com/watch?v=xm6o7gWH8p4 Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206131 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, bone, mechanical loading, proteomics, RNA-seq/transcriptomics About Aging-US The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population. The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.) Please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc Media Contact 18009220957 MEDIA@IMPACTJOURNALS.COM
undefined
Oct 17, 2024 • 4min

Fibroblast Growth Factor 21 and Survival in the Elderly: Polsenior2 Study Results

BUFFALO, NY- October 17, 2024 – A new #research paper was #published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 19 on September 18, 2024, entitled, “Fibroblast growth factor 21 inversely correlates with survival in elderly population – the results of the Polsenior2 study.” As noted in the abstract, fibroblast growth factor 21 (FGF21) is a liver-secreted hormone involved in regulating lipid, glucose, and energy metabolism. Its serum concentration increases with age and is elevated in various diseases. FGF21 is currently being investigated for its potential as a biomarker and therapeutic target. In their paper, Polish researchers Gabriela Handzlik, Aleksander J. Owczarek, Andrzej Więcek, Małgorzata Mossakowska, Tomasz Zdrojewski, Anna Chudek, Magdalena Olszanecka-Glinianowicz, and Jerzy Chudek from the Medical University of Silesia in Katowice, the International Institute of Molecular and Cell Biology in Warsaw, and the Medical University of Gdansk aimed to assess the prognostic value of FGF21 in an older, population-based cohort from the PolSenior2 study. The researchers report that in a sub-analysis of 3,512 individuals aged 60 and older, stratified into tertiles based on FGF21 levels, the survival estimate was worse in participants with middle and high FGF21 levels compared to those in the lowest tertile. These findings were supported by univariable Cox regression analysis, where participants in the middle and high FGF21 tertiles, after adjusting for age, had a 1.43-fold (HR 1.31; 95% CI, 1.05–1.62) and 2.56-fold (HR 1.94; 95% CI, 1.59–2.37) increased risk of mortality, respectively, compared to the lowest tertile. In multivariable Cox regression analysis, the highest FGF21 levels were independently associated with increased mortality (HR 1.53; 95% CI, 1.22–1.92), regardless of co-morbidities and blood parameters. "These results indicate that higher serum FGF21 concentration is an independent predictor of all-cause mortality in the general population of older adults.” DOI - https://doi.org/10.18632/aging.206114 Corresponding author - Gabriela Handzlik - ghandzlik@sum.edu.pl Video short - https://www.youtube.com/watch?v=QkPrI68nbLE Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206114 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, fibroblast growth factor 21, survival, population-based study, longevity About Aging-US The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population. The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.) Please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
undefined
Oct 15, 2024 • 4min

Proteomics of Bone Formation in Young-Adult and Old Mice

BUFFALO, NY- October 15, 2024 – A new #research paper was #published on the #cover of Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 19 on October 12, 2024, entitled, “A proteomics approach to study mouse long bones: examining baseline differences and mechanical loading-induced bone formation in young-adult and old mice.” As noted in the abstract, bone mass declines with age, and the anabolic effects of skeletal loading decrease. While much research has focused on gene transcription, how bone ages and loses its mechanoresponsiveness at the protein level remains unclear. In their paper, researchers Christopher J. Chermside-Scabbo, John T. Shuster, Petra Erdmann-Gilmore, Eric Tycksen, Qiang Zhang, R. Reid Townsend, and Matthew J. Silva from Washington University School of Medicine and Washington University in St. Louis, Missouri, describe how they developed a novel proteomics approach and conducted paired mass spectrometry and RNA-seq analyses on tibias from young-adult (5-month) and old (22-month) mice. The researchers report the first correlation estimate between the bone proteome and transcriptome (Spearman ρ = 0.40). While this is consistent with findings from other tissues, it suggests that only a relatively low amount of variation in protein levels is explained by variation in transcript levels. Of the 71 shared targets that differed with age, eight were associated with bone mineral density in previous GWAS, including the understudied targets Asrgl1 and Timp2. Using complementary RNA in situ hybridization, the researchers confirmed that Asrgl1 and Timp2 showed reduced expression in osteoblasts/osteocytes in aged bones. Additionally, they found evidence of reduced TGF-beta signaling with aging, particularly Tgfb2. The researchers also identified proteomic changes following mechanical loading, noting that at the protein level, bone differed more with age than with loading, and aged bone exhibited fewer loading-induced changes. "Overall, our findings underscore the need for complementary protein-level assays in skeletal biology research.” DOI - https://doi.org/10.18632/aging.206131 Corresponding author - Christopher J. Chermside-Scabbo - ccherms@wustl.edu Video short - https://www.youtube.com/watch?v=xm6o7gWH8p4 Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206131 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, bone, mechanical loading, proteomics, RNA-seq/transcriptomics About Aging-US The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population. The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.) Please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
undefined
Oct 8, 2024 • 1h 4min

Longevity & Aging Series (S2, E2): Dr. Ming Yu and Namita Hattangady

In this installment of the Longevity & Aging Series, Dr. Ming Yu and Namita Hattangady from the Fred Hutchinson Cancer Center in Seattle, join host Dr. Evgeniy Galimov to discuss a research paper they co-authored that was published as the cover for Volume 16, Issue 4 of Aging (Aging-US), entitled, “Mapping the core senescence phenotype of primary human colon fibroblasts.” DOI - https://doi.org/10.18632/aging.205577 Corresponding authors - William M. Grady - wgrady@fredhutch.org, and Ming Yu - myu@fredhutch.org Video interview - https://www.youtube.com/watch?v=eqSa7My_a7w Interview transcription - https://www.aging-us.com/interviews/longevity-aging-series-s2-e2-dr-ming-yu-and-namita-hattangady Abstract Advanced age is the largest risk factor for many diseases and several types of cancer, including colorectal cancer (CRC). Senescent cells are known to accumulate with age in various tissues, where they can modulate the surrounding tissue microenvironment through their senescence associated secretory phenotype (SASP). Recently, we showed that there is an increased number of senescent cells in the colons of CRC patients and demonstrated that senescent fibroblasts and their SASP create microniches in the colon that are conducive to CRC onset and progression. However, the composition of the SASP is heterogenous and cell-specific, and the precise senescence profile of colon fibroblasts has not been well-defined. To generate a SASP atlas of human colon fibroblasts, we induced senescence in primary human colon fibroblasts using various in vitro methods and assessed the resulting transcriptome. Using RNASequencing and further validation by quantitative RT-PCR and Luminex assays, we define and validate a ‘core senescent profile’ that might play a significant role in shaping the colon microenvironment. We also performed KEGG analysis and GO analyses to identify key pathways and biological processes that are differentially regulated in colon fibroblast senescence. These studies provide insights into potential driver proteins involved in senescence-associated diseases, like CRC, which may lead to therapies to improve overall health in the elderly and to prevent CRC. Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.205577 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, senescence, senescence associated secretory phenotype, SASP, colorectal cancer, cancer About Aging-US The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population. The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.) Please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
undefined
Oct 8, 2024 • 4min

Cerebral Blood Flow and Arterial Transit in Older Adults

BUFFALO, NY- October 8, 2024 – A new #research paper was #published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 18 on September 18, 2024, entitled, “Determinants of cerebral blood flow and arterial transit time in healthy older adults.” This research paper highlights that brain health deteriorates with age, particularly in terms of cerebral blood flow (CBF) and arterial transit time (ATT), key markers of brain vascular health. This decline can impair cognitive function and limit independence in later life—an issue that will affect many as the global population continues to age rapidly. In their paper, researchers Jack Feron, Katrien Segaert, Foyzul Rahman, Sindre H. Fosstveit, Kelsey E. Joyce, Ahmed Gilani, Hilde Lohne-Seiler, Sveinung Berntsen, Karen J Mullinger, and Samuel J. E. Lucas from the University of Birmingham, University of Agder, and University of Nottingham aimed to identify modifiable determinants of CBF and ATT in healthy older adults (n = 78, aged 60–81 years). They also investigated the relationship between CBF, ATT, and cognitive function in older adults. The researchers hypothesized that markers of superior general health—such as higher cardiorespiratory fitness, handgrip strength, and grey matter volume, or lower age, BMI, and blood pressure—would be associated with greater CBF and shorter ATT. Results from multiple linear regressions revealed that a higher BMI was associated with lower global cerebral blood flow (CBF) (β = −0.35, P = 0.008) and longer global arterial transit time (ATT) (β = 0.30, P = 0.017). Additionally, global ATT increased with age (β = 0.43, P = 0.004), while higher cardiorespiratory fitness was linked to longer ATT in the parietal (β = 0.44, P = 0.004) and occipital (β = 0.45, P = 0.003) regions. However, neither global nor regional CBF or ATT were associated with processing speed, working memory, or attention. “In conclusion, preventing excessive weight gain may help attenuate age-related declines in brain vascular health.” DOI - https://doi.org/10.18632/aging.206112 Corresponding author - Jack Feron - j.feron@bham.ac.uk Video short - https://www.youtube.com/watch?v=QpS4kK273os Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206112 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts About Aging-US The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population. The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.) Please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
undefined
Sep 25, 2024 • 6min

Behind the Study: Cardiac Metabolism in the Elderly

Nadiyeh Rouhi, PhD student in Medical Physiology and Biophysics, Department of Physiology at the University of Mississippi Medical Center (UMMC), Jackson, MS, discusses an editorial she co-authored that was published by Aging (Aging-US) in Volume 16, Issue 16, titled “Cardiac Metabolism in the Elderly: Effects and Consequences." DOI - https://doi.org/10.18632/aging.206071 Corresponding author - Ji Li - jli3@umc.edu Video interview - https://www.youtube.com/watch?v=tr-ngN3rl38 Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206071 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, metabolism, heart failure, Pdk4 About Aging-US The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population. The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.) Please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM

Remember Everything You Learn from Podcasts

Save insights instantly, chat with episodes, and build lasting knowledge - all powered by AI.
App store bannerPlay store banner