Aging-US cover image

Aging-US

Latest episodes

undefined
Jun 12, 2025 • 4min

APOE Gene Variants Linked to Metabolic Signatures of Aging and Alzheimer's Risk

BUFFALO, NY — June 12, 2025 — A new #research paper was #published in Aging (Aging-US) Volume 17, Issue 5, on May 3, 2025, titled “APOE genotype and biological age impact inter-omic associations related to bioenergetics.” In this study, led by first author Dylan Ellis and corresponding author Noa Rappaport from the Institute for Systems Biology, researchers discovered that different versions of the APOE gene—particularly ε2 and ε4—are linked to metabolic patterns associated with aging and Alzheimer’s disease risk. Both variants were linked to increased levels of diacylglycerols, a type of fat molecule connected to insulin resistance and inflammation, suggesting shared disruptions in how the body regulates energy. The research team analyzed data from over 2,200 adults without an Alzheimer’s diagnosis, exploring how APOE genotypes influence biological age, a measure of health that reflects how quickly or slowly someone is aging at a cellular level. They found that the same metabolic disturbances seen in ε2 carriers were also present in people considered biologically older, revealing unexpected overlap between genetic risk and aging-related metabolic changes. To examine these connections in more detail, the researchers used a multi-omics approach, combining blood-based metabolism and protein data, gut bacteria analysis from stool samples, and clinical chemistry data. This method allowed them to map how genetic differences and biological aging affect the body’s energy systems. They observed altered connections between glucose metabolism, inflammatory markers, and key molecules that play roles in energy production, indicating early disruptions that could contribute to age-related diseases. One of the study’s surprising findings was that the ε2 variant, usually associated with longer life and reduced Alzheimer’s risk, showed metabolic traits similar to those found in insulin-resistant individuals. This suggests that ε2 may carry metabolic disadvantages earlier in life, with its protective effects becoming more pronounced later. Conversely, ε4—linked to greater Alzheimer’s risk—may exert its influence based on interactions with lifestyle factors like diet, sex, and overall health status. “‘Omics association patterns of ε2-carriers and increased biological age were also counter-intuitively similar, displaying significantly increased associations between insulin resistance markers and energy-generating pathway metabolites.” By identifying these shared biological signatures, this study offers a new framework for understanding how genes and metabolism work together to influence aging. These findings could support more personalized health strategies aimed at delaying biological aging and reducing the risk of chronic diseases. As aging populations grow worldwide, understanding these pathways is essential to improving healthspan. DOI - https://doi.org/10.18632/aging.206243 Corresponding author - Noa Rappaport - noa.rappaport@isbscience.org Video short - https://www.youtube.com/watch?v=75hZQoO5U0U Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206243 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, apolipoprotein E (APOE), biological age, metabolism, Alzheimer’s disease (AD), insulin resistance To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
undefined
Jun 11, 2025 • 5min

Oxygen Deprivation and the Aging Brain: A Hidden Trigger for Cognitive Decline

As we age, our brains become more sensitive to stress and disease. A recent study sheds light on a lesser-known risk: reduced oxygen levels. The study, titled “Defining the hypoxic thresholds that trigger blood-brain barrier disruption: the effect of age” and recently published as the cover for Volume 17, Issue 5 of Aging (Aging-US), found that low oxygen—also called hypoxia—can harm the aging brain by disrupting the blood-brain barrier (BBB). This damage may contribute to cognitive decline, memory problems, and an increased risk of dementia. Understanding Hypoxia in the Brain The brain relies on a steady supply of oxygen to stay healthy. When oxygen levels fall—a condition known as hypoxia—the brain undergoes changes to adapt. These changes include the remodeling of blood vessels and, importantly, a weakening of the blood-brain barrier. The BBB acts as a filter, protecting brain tissue from harmful substances. When it breaks down, it can lead to inflammation, brain cell damage, and cognitive issues. Hypoxia is common in older adults, especially those with conditions like sleep apnea, chronic obstructive pulmonary disease (COPD), heart failure, and asthma. That is why understanding the connection between low oxygen and the aging brain is crucial for preventing long-term neurological damage. Full blog - https://aging-us.org/2025/06/oxygen-deprivation-and-the-aging-brain-a-hidden-trigger-for-cognitive-decline/ Paper DOI - https://doi.org/10.18632/aging.206241 Corresponding author - Richard Milner - rmilner@sdbri.org Video short - https://www.youtube.com/watch?v=Nr6rTm7aJRo Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206241 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, blood-brain barrier integrity, endothelial, proliferation, microglia, chronic mild hypoxia, hypoxic threshold To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
undefined
Jun 10, 2025 • 3min

Aging Sponsors Open Access Team in 2025 Ride for Roswell

BUFFALO, NY — June 10, 2025 — The Ride for Roswell, one of the USA’s largest cycling events supporting cancer research, returns to Buffalo on Saturday, June 28, 2025. Hosted annually by Roswell Park Comprehensive Cancer Center, this community-wide event brings together riders, volunteers, and supporters to raise funds for cancer research, celebrate survivors, and honor those lost to the disease. Among the returning participants is the Open Access Team, led by team captain Sergei Kurenov. This year, the team is once again proudly sponsored by Impact Journals, the publisher of open access journals Aging, Oncotarget, Genes & Cancer, and Oncoscience. “For the last 10 years, I have continuously participated in the Ride for Roswell in honor of those who have bravely fought cancer,” said Kurenov. “This journey is deeply personal for me. My father battled cancer, and some of my closest friends have fought through prostate and lung cancer with incredible strength.” This year, the Open Access Team rides in honor of Dr. Mikhail (Misha) Blagosklonny, a visionary scientist who dedicated his career to advancing cancer and aging research. As the founding Editor-in-Chief of Aging, Oncotarget and Oncoscience, Dr. Blagosklonny was a pioneer of open-access publishing. His groundbreaking work on mTOR signaling and rapamycin transformed our understanding of cancer biology and healthy lifespan extension. The 2025 Ride for Roswell features nine route options, ranging from 4 to 100 miles, all beginning at the University at Buffalo North Campus. Riders from across the USA and beyond are invited to participate and make a meaningful impact in the fight against cancer. This ride is more than just a journey on two wheels—it’s a commitment to building a future where no one has to fear a cancer diagnosis. There is still time to support the Open Access Team in the 2025 Ride for Roswell. Whether by donating, joining the team, or sharing their story, every action brings us closer to better treatments, deeper understanding, and, ultimately, a cure. Visit the Open Access Team page - https://give.roswellpark.org/site/TR/SpecialEvents/General?team_id=23320&pg=team&fr_id=2020 To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
undefined
Jun 10, 2025 • 4min

Why Epigenetic Clocks May Fail to Measure Anti-Aging Effects

BUFFALO, NY — June 10, 2025 — A new #research perspective was #published in Aging (Aging-US) Volume 17, Issue 5, on May 5, 2025, titled “Methylation clocks for evaluation of anti-aging interventions.” In this perspective article, Dr. Josh Mitteldorf explores how current epigenetic clocks—used to estimate biological age—might mislead scientists trying to evaluate anti-aging therapies. The paper challenges a widespread assumption: that all changes in DNA methylation with age are equally valid for measuring biological decline. Dr. Mitteldorf proposes that failing to distinguish between different types of epigenetic changes could lead to inaccurate conclusions, potentially even favoring treatments that reduce repair processes rather than extend healthy lifespan. Methylation clocks have become a popular tool in aging research. These clocks use patterns of DNA methylation, a form of gene regulation that changes over time, to predict a person’s biological age. Because human aging trials are long and expensive, these clocks offer a faster way to evaluate whether a therapy slows or reverses aging. However, this article warns that not all methylation changes are equal in meaning or effect. The perspective identifies two main categories of methylation changes that occur with age. One type, called 'Type 1,' seems to support the idea that aging may be programmed, with gene activity changing in ways that could cause damage, such as more inflammation or increased cell loss. The second type, “Type 2,” involves increased gene activity aimed at repairing age-related damage. If a therapy reduces the activity of Type 2 genes, it may appear to slow aging while actually interfering with the body’s repair response. “Paradoxically, an intervention that “sets back” the body’s methylation clock to a younger state is shutting off vital repair mechanisms, so it is likely inimical to health and longevity.” This distinction is important because most methylation clocks, including popular models like GrimAge, do not separate these two types. As a result, they may incorrectly suggest that a treatment is reversing aging when it is only suppressing beneficial repair mechanisms. According to Dr. Mitteldorf, this could lead researchers to draw the wrong conclusions and unintentionally slow down progress in anti-aging research. The author also addresses a growing trend in the scientific community that aims to explain age-related methylation as random drift rather than directed change. In a pilot analysis using publicly available data, Dr. Mitteldorf attempted to construct a clock based purely on stochastic, or random, changes. The results showed a weak correlation with age, suggesting that random drift is an unreliable basis for assessing biological aging. Dr. Mitteldorf argues that most age-related methylation changes are likely intentional and regulated, rather than random. If so, epigenetic clocks must be refined to reflect the biological purpose behind methylation shifts. Without distinguishing between changes that indicate damage and those that indicate repair, current clocks may not only mismeasure age but also misguide intervention strategies. This article highlights the urgent need to improve how methylation data are interpreted before such clocks can reliably assess anti-aging therapies. A clearer understanding of these molecular patterns could help reshape the future of aging research and therapy evaluation. DOI - https://doi.org/10.18632/aging.206245 Corresponding author - Josh Mitteldorf - aging.advice@gmail.com To learn more about the journal, please visit our website at https://www.Aging-US.com. MEDIA@IMPACTJOURNALS.COM
undefined
Jun 6, 2025 • 13min

Behind the Study: Rapamycin’s 1-Year Impact on Healthspan—PEARL Trial Results

Dr. Stefanie Morgan joins Dr. Robert Dudley from AgelessRx to discuss a #research paper she co-authored that was #published in Volume 17, Issue 4 of Aging, entitled “Influence of rapamycin on safety and healthspan metrics after one year: PEARL trial results.” DOI - https://doi.org/10.18632/aging.206235 Corresponding author - Stefanie L. Morgan - stefanie@agelessrx.com Author interview - https://www.youtube.com/watch?v=2qlIiVh2OJs Video short - https://www.youtube.com/watch?v=z5j2nyK2HZ8 Abstract Design: This 48-week decentralized, double-blinded, randomized, placebo-controlled trial (NCT04488601) evaluated the long-term safety of intermittent low-dose rapamycin in a healthy, normative-aging human cohort. Participants received placebo, 5 mg or 10 mg compounded rapamycin weekly. The primary outcome measure was visceral adiposity (by DXA scan), secondary outcomes were blood biomarkers, and lean tissue and bone mineral content (by DXA scan). Established surveys were utilized to evaluate health and well-being. Safety was assessed through adverse events and blood biomarker monitoring. Results: Adverse and serious adverse events were similar across all groups. Visceral adiposity did not change significantly (ηp2 = 0.001, p = 0.942), and changes in blood biomarkers remained within normal ranges. Lean tissue mass (ηp2 = 0.202, p = 0.013) and self-reported pain (ηp2 = 0.168, p = 0.015) improved significantly for women using 10 mg rapamycin. Self-reported emotional well-being (ηp2 = 0.108, p = 0.023) and general health (ηp2 = 0.166, p = 0.004) also improved for those using 5 mg rapamycin. No other significant effects were observed. Conclusions: Low-dose, intermittent rapamycin administration over 48 weeks is relatively safe in healthy, normative-aging adults, and was associated with significant improvements in lean tissue mass and pain in women. Future work will evaluate benefits of a broader range of rapamycin doses on healthspan metrics for longevity, and will aim to more comprehensively establish efficacy. Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206235 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, rapamycin, geroscience, longevity, healthspan To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
undefined
Jun 4, 2025 • 2min

Longevity & Aging Series Wins Silver Award for Excellence in Video/Film at SSP EPIC Awards

Buffalo, NY — June 4, 2025 — The Longevity & Aging Series has been honored with the Silver Award for “Excellence in Video/Film” at the inaugural EPIC Awards celebration on May 29, 2025, during the Society for Scholarly Publishing (SSP) 47th Annual Meeting in Baltimore, Maryland. The EPIC Awards recognize the achievements of those who are advancing scholarly publishing through creativity, collaboration, and cutting-edge innovation. The Longevity & Aging Series, hosted by Aging (Aging-US) Editorial Board member Dr. Evgeniy Galimov, stood out for its impactful storytelling, production quality, and commitment to advancing understanding in the field of aging research. The Longevity & Aging Series brings together leading experts to discuss the latest developments in the biology of aging, healthy longevity, and interventions to improve healthspan. Now in its third season, the series is a trusted resource for scientists, clinicians, and the broader public interested in the future of aging research. For more information about the Aging (Aging-US) Longevity & Aging Series and to view the award-winning videos, please visit our show page or YouTube channel. If you are interested in becoming a guest or would like to know more about the series, please email us at media@impactjournals.com. Longevity & Aging Series Show Page - https://www.aging-us.com/longevity Aging-US YouTube Channel - https://www.youtube.com/@AgingJournal To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
undefined
Jun 4, 2025 • 5min

New Vision for Healthcare Focuses on Preventing Aging-Related Diseases

BUFFALO, NY — June 4, 2025 — A new #editorial was #published in Aging (Aging-US) Volume 17, Issue 5, on May 29, 2025, titled “Rethinking healthcare through aging biology.” In this scientific editorial, Aging (Aging-US) Editor-in-Chief Marco Demaria from the European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG) and the University of Groningen (RUG), advocates for healthcare reform that addresses the biological drivers of aging rather than individual chronic conditions. The article proposes that targeting the root causes of age-related diseases through aging biology could revolutionize preventive care, extend healthspan, and reduce long-term healthcare costs. This proactive approach aligns with a growing body of aging research focused on improving healthy longevity. Dr. Demaria explains that today’s disease-focused model is inadequate for aging populations, who often suffer from multimorbidity—the presence of multiple chronic illnesses like cancer, heart disease, and type 2 diabetes. These overlapping conditions, rooted in common aging mechanisms, overwhelm healthcare systems and lead to complex treatments with limited success. The editorial suggests that identifying and intervening in the biological aging process could prevent such diseases before they emerge. In the editorial, Dr. Demaria outlines three healthcare paradigms. The first is the existing system, which reacts to disease after symptoms appear. The second involves intervening once age-related damage begins, using new tools such as senolytics, which eliminate harmful senescent cells, and rapalogs, which regulate cellular metabolism. The third and most forward-looking model focuses on preventing aging-related damage before it starts. This strategy supports lifelong biological balance and seeks to avoid early molecular decline through continuous health maintenance. Prevention is key in this model. Lifestyle choices—such as exercise, a healthy diet, quality sleep, and stress reduction—play a vital role in slowing the aging process. Dr. Demaria also points to the promise of biological age diagnostics—tools or tests that estimate a person’s biological age—which allow people to track their physiological aging and adopt personalized interventions. Additionally, optimizing maternal nutrition and early-life health can contribute to lifelong disease prevention. To support this shift, the editorial calls for major changes in medical education. Physicians must be trained in geroscience, healthspan optimization, and personalized preventive care. This knowledge will prepare future clinicians not just to treat disease, but to delay or prevent it altogether. Collaboration among healthcare providers, researchers, and policymakers will be essential for building this new system. ​​“The third paradigm—preventing aging-related damage—demands a systemic shift toward predictive and preventative research, with an emphasis on multi-omic data, lifestyle interventions, and early-life interventions.” By redefining medicine around the science of aging, Dr. Demaria’s editorial highlights the path toward healthier aging, longer life expectancy, and a more sustainable healthcare future. DOI - https://doi.org/10.18632/aging.206262 Corresponding author - Marco Demaria - m.demaria@umcg.nl Video short - https://www.youtube.com/watch?v=xR-16cjHnQY To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
undefined
Jun 3, 2025 • 4min

Aging Increases Brain’s Sensitivity to Hypoxia and Blood-Brain Barrier Damage in Mice

BUFFALO, NY — June 3, 2025 — A new #research paper was #published in Aging (Aging-US) on May 1, 2025, as the #cover of Volume 17, Issue 5, titled “Defining the hypoxic thresholds that trigger blood-brain barrier disruption: the effect of age.” In this study, researchers Arjun Sapkota, Sebok K. Halder, and Richard Milner from San Diego Biomedical Research Institute investigated how aging affects the brain’s vulnerability to low oxygen, or hypoxia. Using C57BL/6J mice ranging from 2 to 23 months of age, they identified specific oxygen levels that disrupt the blood-brain barrier (BBB)—a critical structure that protects brain tissue from harmful substances. The findings are important for understanding age-related cognitive decline and the potential risks faced by individuals with chronic oxygen-limiting conditions such as asthma, sleep apnea, emphysema, and heart disease. The BBB is essential for maintaining brain health. In this study, mild and prolonged hypoxia—called chronic mild hypoxia—was found to compromise the BBB in mice. Older mice showed significantly more BBB disruption than younger ones. Notably, barrier weakening and blood vessel changes occurred at oxygen levels of just 15% in aged mice, compared to 13% in young mice. These data suggest that the aging brain is more sensitive to oxygen deprivation, even at levels that may be considered only mildly hypoxic. The researchers also determined when this vulnerability emerged. The BBB showed increased sensitivity to low oxygen not only in aged mice but also in mice as young as 2 to 6 months, with a second spike occurring between 12 and 15 months—equivalent to middle age in mice. These findings may reflect age-dependent changes in brain vascular function and remodeling capacity. “Hypoxia-induced endothelial proliferation was relatively constant across the age range, but advanced age strongly enhanced the degree of BBB disruption (4-6-fold greater in 23 months vs. 2 months old).” Another key focus was microglial activation, a sign of brain inflammation. Aged mice exhibited higher microglial activation across all oxygen levels, including normal conditions. Chronic microglial activation is closely linked to neuroinflammation and has been implicated in diseases such as Alzheimer’s. While the rate of blood vessel formation was constant across ages, the degree of BBB disruption increased sharply with age, suggesting that repair mechanisms may weaken over time. These results may help explain why older adults with chronic hypoxia-related diseases are at higher risk for neurodegeneration and cognitive decline. The study also draws attention to the risks of high-altitude exposure for aging populations, where oxygen levels naturally drop. Altogether, these findings underscore the importance of protecting brain health in older individuals by managing oxygen exposure and reducing hypoxia-related risks. The researchers emphasize the need to develop new therapies that support blood-brain barrier integrity, particularly in aging populations exposed to chronic or intermittent low-oxygen conditions. DOI - https://doi.org/10.18632/aging.206241 Corresponding author - Richard Milner - rmilner@sdbri.org Video short - https://www.youtube.com/watch?v=Nr6rTm7aJRo Keywords - aging, blood-brain barrier integrity, endothelial, proliferation, microglia, chronic mild hypoxia, hypoxic threshold To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
undefined
May 23, 2025 • 4min

Unintentional Weight Loss Identified as Top Predictor of Fall Risk in Taiwanese Elderly

BUFFALO, NY — May 23, 2025 — A new #research paper was #published in Aging (Aging-US) Volume 17, Issue 4, on April 1, 2025, titled “Examining frailty phenotypes of community-dwelling older adults in Taiwan using the falls risk for older people in the community – Taiwan version (Tw-FROP-Com).” A research team led by first author Ya-Mei Tzeng and corresponding authors Yu-Tien Chang and Yaw-Wen Chang from the National Defense Medical Center studied older adults in Taiwan and found that unintentional weight loss is the most significant individual predictor of fall risk among the common signs of frailty. This finding highlights the importance of early detection and tailored interventions to reduce fall-related injuries among aging populations. Falls are a major cause of injury-related death in seniors, especially in low- and middle-income countries. In Taiwan, they rank as the second leading cause of accidental death among those aged 65 and older. The researchers evaluated five signs of frailty—weakness, slowness, exhaustion, low physical activity, and unintentional weight loss—using a locally adapted fall risk screening tool, Tw-FROP-Com. Frailty is a condition marked by reduced strength, stamina, and resilience, making older adults more vulnerable to accidents and illness. The study analyzed data from 375 older adults participating in a fall prevention program in Keelung City. Of these, 18.7% were classified as frail, and nearly one-third had experienced a fall in the past year. All five frailty signs were associated with increased fall risk, but statistical analysis showed that unintentional weight loss had the strongest association, even after adjusting for factors like age and previous falls. Rather than relying on a broad frailty label, this study found that analyzing each frailty feature individually provided more accurate predictions of fall risk. Weight loss, in particular, was also associated with conditions such as malnutrition, muscle decline, or chronic illness. “Treating frailty as five distinct components provided a more precise prediction of fall risk than using a dichotomous frailty measure (Yes/No).” The findings support the use of accessible screening tools like Tw-FROP-Com in everyday healthcare settings. Because it does not require complex equipment or physical testing, it can be widely applied to identify older adults at risk. Interventions such as nutritional support, physical activity, and weight monitoring can then be offered before a fall occurs. The researchers recommend that public health programs and healthcare providers focus on each specific frailty sign, especially unintentional weight loss, rather than relying only on overall frailty status. As the global population ages, targeted fall prevention strategies like these may help older adults live healthier, more independent lives. Paper DOI: https://doi.org/10.18632/aging.206231 Corresponding authors: Yu-Tien Chang – greengarden720925@gmail.com; Yaw-Wen Chang- yawwenc@office365.ndmctsgh.edu.tw Keywords: aging, frailty, fall risk, fried frailty criteria, older adults, Tw-FROP-Com Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, epigenetics, DNA methylation, diet, biological clock To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
undefined
May 23, 2025 • 5min

Study Identifies Foods That May Reverse Biological Age and Promote Healthy Aging in Men

In a world where we are living longer but not always healthier, scientists are searching for ways to add life to our years, not just years to our lives. A recent study published in Aging (Aging-US), Volume 17, Issue 4, led by researchers at the National University of Natural Medicine, suggests that certain common foods, already known for their health benefits, might also help slow or even reverse epigenetic or biological aging. These foods, rich in specific plant compounds, appear to influence our DNA in ways that may slow down the body’s epigenetic clock. Full blog - https://aging-us.org/2025/05/study-identifies-foods-that-may-reverse-biological-age-and-promote-healthy-aging-in-men/ Paper DOI - https://doi.org/10.18632/aging.206240 Corresponding author - Ryan Bradley - rbradley@nunm.edu Video short - https://www.youtube.com/watch?v=T6I33AIAIFM Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206240 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, epigenetics, DNA methylation, diet, biological clock To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app