Learning Bayesian Statistics

Alexandre Andorra
undefined
9 snips
Aug 23, 2023 • 1h 60min

#89 Unlocking the Science of Exercise, Nutrition & Weight Management, with Eric Trexler

Eric Trexler, a researcher at Duke University with a PhD in Human Movement Science, shares his insights on exercise, nutrition, and metabolism. He delves into metabolic adaptation and the complexities of weight management, explaining how caloric intake impacts energy expenditure. Trexler also highlights the role of Bayesian statistics in overcoming challenges in exercise science. The conversation touches on the connection between stoicism and dieting struggles, and the gap between scientific understanding and public misinformation.
undefined
4 snips
Aug 10, 2023 • 1h 12min

#88 Bridging Computation & Inference in Artificial Intelligent Systems, with Philipp Hennig

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!Listen on PoduramaMy Intuitive Bayes Online Courses1:1 Mentorship with meToday, we’re gonna learn about probabilistic numerics — what they are, what they are good for, and how they relate computation and inference in artificial intelligent systems.To do this, I have the honor of hosting Philipp Hennig, a distinguished expert in this field, and the Chair for the Methods of Machine Learning at the University of Tübingen, Germany. Philipp studied in Heidelberg, also in Germany, and at Imperial College, London. Philipp received his PhD from the University of Cambridge, UK, under the supervision of David MacKay, before moving to Tübingen in 2011. Since his PhD, he has been interested in the connection between computation and inference. With international colleagues, he helped establish the idea of probabilistic numerics, which describes computation as Bayesian inference. His book, Probabilistic Numerics — Computation as Machine Learning, co-authored with Mike Osborne and Hans Kersting, was published by Cambridge University Press in 2022 and is also openly available online. So get comfy to explore the principles that underpin these algorithms, how they differ from traditional numerical methods, and how to incorporate uncertainty into the decision-making process of these algorithms.Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !Thank you to my Patrons for making this episode possible!Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Raul Maldonado, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Trey Causey, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh, Grant Pezzolesi, Avram Aelony, Joshua Meehl, Javier Sabio, Kristian Higgins, Alex Jones, Gregorio Aguilar and Matt Rosinski.Visit https://www.patreon.com/learnbayesstats to unlock exclusive Bayesian swag ;)Links from the show:Philipp on Twitter:...
undefined
17 snips
Jul 30, 2023 • 1h 9min

#87 Unlocking the Power of Bayesian Causal Inference, with Ben Vincent

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!Listen on PoduramaMy Intuitive Bayes Online Courses1:1 Mentorship with meI’ll be honest — this episode is long overdue. Not only because Ben Vincent is a friend, fellow PyMC Labs developer, and outstanding Bayesian modeler. But because he works on so many fascinating topics — so I’m all the happier to finally have him on the show!In this episode, we’re gonna focus on causal inference, how it naturally extends Bayesian modeling, and how you can use the CausalPy open-source package to supercharge your Bayesian causal inference. We’ll also touch on marketing models and the pymc-marketing package, because, well, Ben does a lot of stuff ;)Ben got his PhD in neuroscience at Sussex University, in the UK. After a postdoc at the University of Bristol, working on robots and active vision, as well as 15 years as a lecturer at the Scottish University of Dundee, he switched to the private sector, working with us full time at PyMC Labs — and that is a treat!When he’s not working, Ben loves running 5k’s, cycling in the forest, lifting weights, and… learning about modern monetary theory.Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !Thank you to my Patrons for making this episode possible!Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Nathaniel Neitzke, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Raul Maldonado, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Trey Causey, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh, Grant Pezzolesi, Avram Aelony and Joshua Meehl.Visit https://www.patreon.com/learnbayesstats to unlock exclusive Bayesian swag ;)Links from the show:Ben’s website: https://drbenvincent.github.io/Ben on GitHub: https://github.com/drbenvincentBen on Twitter:
undefined
Jul 14, 2023 • 59min

#86 Exploring Research Synchronous Languages & Hybrid Systems, with Guillaume Baudart

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!Listen on PoduramaMy Intuitive Bayes Online Courses1:1 Mentorship with meThis episode is unlike anything I’ve covered so far on the show. Let me ask you: Do you know what a research synchronous language is? What about hybrid systems? Last try: have you heard of Zelus, or ProbZelus?If you answered “no” to one of the above, then you’re just like me! And that’s why I invited Guillaume Baudart for this episode — to teach us about all these fascinating topics!A researcher in the PARKAS team of Inria, Guillaume's research focuses on probabilistic and reactive programming languages. In particular, he works on ProbZelus, a probabilistic extension to Zelus, itself a research synchronous language to implement hybrid systems.To simplify, Zelus is a modeling framework to simulate the dynamics of systems both smooth and subject to discrete dynamics — if you’ve ever worked with ODEs, you may be familiar with these terms.If you’re not — great, Guillaume will explain everything in the episode! And I know it might sound niche, but this kind of approach actually has very important applications — such as proving that there are no bugs in a program.Guillaume did his PhD at École Normale Supérieure, in Paris, working on reactive programming languages and quasi-periodic systems. He then worked in the AI programming team of IBM Research, before coming back to the École Normale Supérieure, working mostly on reactive and probabilistic programming.In his free time, Guillaume loves spending time with his family, playing the violin with friends, and… cooking!Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !Thank you to my Patrons for making this episode possible!Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Nathaniel Neitzke, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Raul Maldonado, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Trey Causey, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt
undefined
Jun 27, 2023 • 1h 6min

#85 A Brief History of Sports Analytics, with Jim Albert

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!My Intuitive Bayes Online Courses1:1 Mentorship with meIn this episode, I am honored to talk with a legend of sports analytics in general, and baseball analytics in particular. I am of course talking about Jim Albert.Jim grew up in the Philadelphia area and studied statistics at Purdue University. He then spent his entire 41-year academic career at Bowling Green State University, which gave him a wide diversity of classes to teach – from intro statistics through doctoral level.As you’ll hear, he’s always had a passion for Bayesian education, Bayesian modeling and learning about statistics through sports. I find that passion fascinating about Jim, and I suspect that’s one of the main reasons for his prolific career — really, the list of his writings and teachings is impressive; just go take a look at the show notes.Now an Emeritus Professor of Bowling Green, Jim is retired, but still an active tennis player and writer on sports analytics — his blog, “Exploring Baseball with R”, is nearing 400 posts!Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !Thank you to my Patrons for making this episode possible!Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Nathaniel Neitzke, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Raul Maldonado, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Trey Causey, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh, Grant Pezzolesi, Avram Aelony and Joshua Meehl.Visit https://www.patreon.com/learnbayesstats to unlock exclusive Bayesian swag ;)Links from the show:Jim’s website: https://bayesball.github.io/Jim’s baseball blog: https://baseballwithr.wordpress.com/Jim on...
undefined
Jun 13, 2023 • 1h 6min

#84 Causality in Neuroscience & Psychology, with Konrad Kording

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!My Intuitive Bayes Online Courses1:1 Mentorship with meThis is another installment in our neuroscience modeling series! This time, I talked with Konrad Kording, about the role of Bayesian stats in neuroscience and psychology, electrophysiological data to study what neurons do, and how this helps explain human behavior.Konrad studied at ETH Zurich, then went to UC London and MIT for his postdocs. After a decade at Northwestern University, he is now Penn Integrated Knowledge Professor at the University of Pennsylvania.As you’ll hear, Konrad is particularly interested in the question of how the brain solves the credit assignment problem and similarly how we should assign credit in the real world (through causality). Building on this, he is also interested in applications of causality in biomedical research.And… he’s also a big hiker, skier and salsa dancer!Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !Thank you to my Patrons for making this episode possible!Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Nathaniel Neitzke, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Raul Maldonado, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Trey Causey, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh, Grant Pezzolesi, Avram Aelony and Joshua Meehl.Visit https://www.patreon.com/learnbayesstats to unlock exclusive Bayesian swag ;)Links from the show:Konrad’s lab: https://kordinglab.com/Konrad’s lab on GitHub: https://github.com/KordingLabKonrad’s lab on Twitter: https://twitter.com/KordingLabLBS #81, Neuroscience of Perception: Exploring the Brain, with Alan Stocker:
undefined
May 25, 2023 • 1h 17min

#83 Multilevel Regression, Post-Stratification & Electoral Dynamics, with Tarmo Jüristo

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!My Intuitive Bayes Online Courses1:1 Mentorship with meOne of the greatest features of this podcast, and my work in general, is that I keep getting surprised. Along the way, I keep learning, and I meet fascinating people, like Tarmo Jüristo.Tarmo is hard to describe. These days, he’s heading an NGO called Salk, in the Baltic state called Estonia. Among other things, they are studying and forecasting elections, which is how we met and ended up collaborating with PyMC Labs, our Bayesian consultancy.But Tarmo is much more than that. Born in 1971 in what was still the Soviet Union, he graduated in finance from Tartu University. He worked in finance and investment banking until the 2009 crisis, when he quit and started a doctorate in… cultural studies. He then went on to write for theater and TV, teaching literature, anthropology and philosophy. An avid world traveler, he also teaches kendo and Brazilian jiu-jitsu.As you’ll hear in the episode, after lots of adventures, he established Salk, and they just used a Bayesian hierarchical model with post-stratification to forecast the results of the 2023 Estonian parliamentary elections and target the campaign efforts to specific demographics.Oh, and let thing: Tarmo is a fan of the show — I told you he was a great guy ;)Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !Thank you to my Patrons for making this episode possible!Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Nathaniel Neitzke, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Raul Maldonado, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Trey Causey, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh and Grant Pezzolesi.Visit https://www.patreon.com/learnbayesstats to unlock exclusive Bayesian swag ;)Links from the show:Tarmo on GitHub: https://github.com/tarmojuristoTarmo on...
undefined
May 5, 2023 • 1h 7min

#82 Sequential Monte Carlo & Bayesian Computation Algorithms, with Nicolas Chopin

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!My Intuitive Bayes Online Courses1:1 Mentorship with me------------------------------------------------------------------------------Max Kochurov’s State of Bayes Lecture Series: https://www.youtube.com/playlist?list=PL1iMFW7frOOsh5KOcfvKWM12bjh8zs9BQSign up here for upcoming lessons: https://www.meetup.com/pymc-labs-online-meetup/events/293101751/------------------------------------------------------------------------------We talk a lot about different MCMC methods on this podcast, because they are the workhorses of the Bayesian models. But other methods exist to infer the posterior distributions of your models — like Sequential Monte Carlo (SMC) for instance. You’ve never heard of SMC? Well perfect, because Nicolas Chopin is gonna tell you all about it in this episode!A lecturer at the French university of ENSAE since 2006, Nicolas is one of the world experts on SMC. Before that, he graduated from Ecole Polytechnique and… ENSAE, where he did his PhD from 1999 to 2003.Outside of work, Nicolas enjoys spending time with his family, practicing aikido, and reading a lot of books.Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !Thank you to my Patrons for making this episode possible!Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Nathaniel Neitzke, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Raul Maldonado, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Trey Causey, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady and Kurt TeKolste.Visit https://www.patreon.com/learnbayesstats to unlock exclusive Bayesian swag ;)Links from the show:Old episodes...
undefined
4 snips
Apr 24, 2023 • 1h 15min

#81 Neuroscience of Perception: Exploring the Brain, with Alan Stocker

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!My Intuitive Bayes Online Courses1:1 Mentorship with meDid you know that the way your brain perceives speed depends on your priors? And it’s not the same at night? And it’s not the same for everybody?This is another of these episodes I love where we dive into neuroscience, how the brain works, and how it relates to Bayesian stats. It’s actually a follow-up to episode 77, where Pascal Wallisch told us how the famous black and blue dress tells a lot about our priors about how we perceive the world. So I strongly recommend listening to episode 77 first, and then come back here, to have your mind blown away again, this time by Alan Stocker.Alan was born and raised in Switzerland. After a PhD in physics at ETH Zurich, he somehow found himself doing neuroscience, during a postdoc at NYU. And then he never stopped — still leading the Computational Perception and Cognition Laboratory of the University of Pennsylvania.But Alan is also a man of music (playing the piano when he can), a man of coffee (he’ll never refuse an olympia cremina or a kafatek) and a man of the outdoors (he loves trashing through deep powder with his snowboard).Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !Thank you to my Patrons for making this episode possible!Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor, Thomas Wiecki, Chad Scherrer, Nathaniel Neitzke, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Joshua Duncan, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Raul Maldonado, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, David Haas, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Trey Causey, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady and Kurt TeKolste.Visit https://www.patreon.com/learnbayesstats to unlock exclusive Bayesian swag ;)Links from the show:Alan’s website: https://www.sas.upenn.edu/~astocker/lab/members-files/alan.phpNoise characteristics and prior expectations in human visual speed perception: https://www.nature.com/articles/nn1669Combining efficient coding with
undefined
Apr 11, 2023 • 1h 9min

#80 Bayesian Additive Regression Trees (BARTs), with Sameer Deshpande

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!I’m sure you know at least one Bart. Maybe you’ve even used one — but you’re not proud of it, because you didn’t know what you were doing. Thankfully, in this episode, we’ll go to the roots of regression trees — oh yeah, that’s what BART stands for. What were you thinking about?Our tree expert will be no one else than Sameer Deshpande. Sameer is an assistant professor of Statistics at the University of Wisconsin-Madison. Prior to that, he completed a postdoc at MIT and earned his Ph.D. in Statistics from UPenn.On the methodological front, he is interested in Bayesian hierarchical modeling, regression trees, model selection, and causal inference. Much of his applied work is motivated by an interest in understanding the long-term health consequences of playing American-style tackle football. He also enjoys modeling sports data and was a finalist in the 2019 NFL Big Data Bowl.Outside of Statistics, he enjoys cooking, making cocktails, and photography — sometimes doing all of those at the same time…Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !Thank you to my Patrons for making this episode possible!Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor, Thomas Wiecki, Chad Scherrer, Nathaniel Neitzke, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Joshua Duncan, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Raul Maldonado, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, David Haas, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Trey Causey, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, and Arkady.Visit https://www.patreon.com/learnbayesstats to unlock exclusive Bayesian swag ;)Links from the show:Sameer’s website: https://skdeshpande91.github.io/Sameer on GitHub: https://github.com/skdeshpande91Sameer on Twitter: https://twitter.com/skdeshpande91 Sameer on Google Scholar: https://scholar.google.com/citations?user=coVrnWIAAAAJ&hl=enLBS #50 Ta(l)king Risks & Embracing...

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app