

The Role of Lipids in Aging: Insights From C. Elegans
Feb 24, 2023
07:53
Listen to a blog summary of a trending research paper published in Volume 15, Issue 3 of Aging (Aging-US), entitled, "The lipidomes of C. elegans with mutations in asm-3/acid sphingomyelinase and hyl-2/ceramide synthase show distinct lipid profiles during aging."
__________________________________________________
Lipids are a diverse group of biomolecules that are essential for life, including fats, oils, waxes, and steroids, and play crucial roles in cell membrane structure, energy storage and signaling. Lipidomics is the comprehensive analysis of lipids and their interactions in biological systems, with an aim to understand the role of lipids in cellular processes and their association with diseases. As we age, our cells undergo complex changes, including alterations in cellular lipid profiles. These changes are not only confined to humans; organisms such as the nematode Caenorhabditis elegans (C. elegans) are also subject to changes in lipid composition during aging.
“For example, lipid classes including fatty acids (FA), triacylglycerols (TAG), sphingolipids (SL), and phospholipids (PL) have been identified as targets in lipid signatures related to aging [2, 3]. Furthermore, specific signatures are detected in the lipid profiles of those with age-related diseases, such as Alzheimer’s Disease [4–9]. In addition, the abundance of many fatty acid subtypes differs between the youth, elderly, and centenarians [10, 11].”
In a recent study, researchers Trisha A. Staab, Grace McIntyre, Lu Wang, Joycelyn Radeny, Lisa Bettcher, Melissa Guillen, Margaret P. Peck, Azia P. Kalil, Samantha P. Bromley, Daniel Raftery, and Jason P. Chan from Marian University, the University of Washington and Juniata College investigate the lipid profiles of C. elegans with mutations in the genes asm-3/acid sphingomyelinase and hyl-2/ceramide synthase during aging. On February 13, 2023, their research paper was published in Aging’s Volume 15, Issue 3, entitled, “The lipidomes of C. elegans with mutations in asm-3/acid sphingomyelinase and hyl-2/ceramide synthase show distinct lipid profiles during aging.”
Full blog - https://aging-us.org/2023/02/the-role-of-lipids-in-aging-insights-from-c-elegans/
DOI - https://doi.org/10.18632/aging.204515
Corresponding author - Jason P. Chan - jpchan@me.com
Keywords - lipidomics, aging, sphingolipid metabolism, C. elegans, fatty acid metabolism
About Aging-US
Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Please visit our website at https://www.Aging-US.com and connect with us:
SoundCloud - https://soundcloud.com/Aging-Us
Facebook - https://www.facebook.com/AgingUS/
Twitter - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Media Contact
18009220957
MEDIA@IMPACTJOURNALS.COM