BUFFALO, NY- May 21, 2024 – A new research #paper was #published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 16, Issue 9, entitled, “Germicidal lamps using UV-C radiation may pose health safety issues: a biomolecular analysis of their effects on apoptosis and senescence.”
The battle against the COVID-19 pandemic has spurred a heightened state of vigilance in global healthcare, leading to the proliferation of diverse sanitization methods. Among these approaches, germicidal lamps utilizing ultraviolet (UV) rays, particularly UV-C (wavelength ranging from 280 to 100 nm), have gained prominence for domestic use.
These light-emitting diode (LED) lamps are designed to sanitize the air, objects, and surfaces. However, the prevailing concern is that these UV lamps are often introduced into the market without adequate accompanying information to ensure their safe utilization. Importantly, exposure to absorbed UV light can potentially trigger adverse biological responses, encompassing cell death and senescence.
In this new study, researchers Nicola Alessio, Alessia Ambrosino, Andrea Boggi, Domenico Aprile, Iole Pinto, Giovanni Galano, Umberto Galderisi, and Giovanni Di Bernardo from the University of Campania Luigi Vanvitelli, Regional Public Health Laboratory in Siena, Italy, ASL Napoli 1 Centro P.S.I. Napoli Est-Barra, and Temple University performed a series of investigations aimed at comprehending the biological repercussions of UV-C radiation exposure from readily available domestic lamps.
“Our focus centered on epithelial retinal cells, keratinocytes, and fibroblasts, components of the skin and ocular targets frequently exposed to UV irradiation.”
Their findings underscore the potential harm associated with even brief exposure to UV, leading to irreversible and detrimental alterations in both skin cells and retinal cells of the eye. Notably, epithelial retinal cells exhibited heightened sensitivity, marked by substantial apoptosis. In contrast, keratinocytes demonstrated resilience to apoptosis even at elevated UV doses, though they were prone to senescence. Meanwhile, fibroblasts displayed a gradual amplification of both senescence and apoptosis as radiation doses escalated.
“In summary, despite the potential benefits offered by UV-C in deactivating pathogens like SARS-CoV-2, it remains evident that the concurrent risks posed by UV-C to human health cannot be ignored.”
DOI - https://doi.org/10.18632/aging.205787
Corresponding authors - Umberto Galderisi - umberto.galderisi@unicampania.it, and Giovanni Di Bernardo - gianni.dibernardo@unicampania.it
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.205787
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Keywords - aging, senescence, apoptosis, UV light, public health
About Aging-US
Aging publishes research papers in all fields of aging research, including but not limited to aging processes (from yeast to mammals), cellular senescence, age-related diseases (such as cancer and Alzheimer’s disease) and their prevention and treatment, anti-aging strategies and drug development, and, importantly, the role of signal transduction pathways in aging (such as mTOR) and potential approaches to modulate these signaling pathways to extend lifespan.
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM