Today we wrap up our coverage of the 2022 CVPR conference joined by Aljosa Osep, a postdoc at the Technical University of Munich & Carnegie Mellon University. In our conversation with Aljosa, we explore his broader research interests in achieving robot vision, and his vision for what it will look like when that goal is achieved. The first paper we dig into is Text2Pos: Text-to-Point-Cloud Cross-Modal Localization, which proposes a cross-modal localization module that learns to align textual descriptions with localization cues in a coarse-to-fine manner. Next up, we explore the paper Forecasting from LiDAR via Future Object Detection, which proposes an end-to-end approach for detection and motion forecasting based on raw sensor measurement as opposed to ground truth tracks. Finally, we discuss Aljosa’s third and final paper Opening up Open-World Tracking, which proposes a new benchmark to analyze existing efforts in multi-object tracking and constructs a baseline for these tasks.
The complete show notes for this episode can be found at twimlai.com/go/581
Get the Snipd podcast app
Unlock the knowledge in podcasts with the podcast player of the future.
AI-powered podcast player
Listen to all your favourite podcasts with AI-powered features
Discover highlights
Listen to the best highlights from the podcasts you love and dive into the full episode
Save any moment
Hear something you like? Tap your headphones to save it with AI-generated key takeaways
Share & Export
Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more
AI-powered podcast player
Listen to all your favourite podcasts with AI-powered features
Discover highlights
Listen to the best highlights from the podcasts you love and dive into the full episode