Support the show to get full episodes, full archive, and join the Discord community.
Carina Curto is a professor in the Department of Mathematics at The Pennsylvania State University. She uses her background skills in mathematical physics/string theory to study networks of neurons. On this episode, we discuss the world of topology in neuroscience - the study of the geometrical structures mapped out by active populations of neurons. We also discuss her work on "combinatorial linear threshold networks" (CLTNs). Unlike the large deep learning models popular today as models of brain activity, the CLTNs Carina builds are relatively simple, abstracted graphical models. This property is important to Carina, whose goal is to develop mathematically tractable neural network models. Carina has worked out how the structure of many CLTNs allows prediction of the model's allowable dynamics, how motifs of model structure can be embedded in larger models while retaining their dynamical features, and more. The hope is that these elegant models can tell us more about the principles our messy brains employ to generate the robust and beautiful dynamics underlying our cognition.
0:00 - Intro
4:25 - Background: Physics and math to study brains
20:45 - Beautiful and ugly models
35:40 - Topology
43:14 - Topology in hippocampal navigation
56:04 - Topology vs. dynamical systems theory
59:10 - Combinatorial linear threshold networks
1:25:26 - How much more math do we need to invent?
Get the Snipd podcast app
Unlock the knowledge in podcasts with the podcast player of the future.
AI-powered podcast player
Listen to all your favourite podcasts with AI-powered features
Discover highlights
Listen to the best highlights from the podcasts you love and dive into the full episode
Save any moment
Hear something you like? Tap your headphones to save it with AI-generated key takeaways
Share & Export
Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more
AI-powered podcast player
Listen to all your favourite podcasts with AI-powered features
Discover highlights
Listen to the best highlights from the podcasts you love and dive into the full episode