The AI in Business Podcast cover image

The AI in Business Podcast

Applications of Machine Vision in Heavy Industry

May 18, 2018
20:28

Episode summary: In the last two or three years we at TechEmergence have witnessed a definite uptick in AI applications like predictive maintenance and heavy industry. Many exciting business intelligence and sensor data applications are making their way into “stodgy” industries like transportation, oil and gas, and telecom - where machine vision has countless applications.

We had caught up with Massimiliano Versace, CEO of Neurala over 4 years ago in an interview about the ethical implications of AI. In this week’s episode of AI in Industry, Max speaks with us about how machine vision and drones can be used together to automate the process of facilities and heavy asset upkeep. Max walks us through potential applications in telecom and rail transportation and explains where he thinks machine vision has the strongest potential to impact the bottom line.

Business leaders who manage heavy assets or physical infrastructure should find this interview insightful, as Max explains both current and near-future applications for machine vision for maintenance and upkeep.

Interested readers can listen to the full interview with Max here: https://www.techemergence.com/applications-of-machine-vision-in-heavy-industry/

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode