

Trending With Impact: Green Tea Enhances Fitness and Lifespan in Worms
Oct 22, 2021
06:01
Boiled or iced with water or milk, blended in smoothies, condensed into shots or even baked into pastries—humans are infatuated with green tea. Today, green tea is one of the most widely consumed beverages in the world. Molecules found in this plant, named catechins, are known to have numerous evidence-based health benefits, including weight loss and age delaying properties. However, the mechanism by which these effects take place have yet to be fully elucidated.
“The popularity of green tea makes it crucial to study its impact on health and aging.”
Researchers from Friedrich Schiller University Jena, Huazhong Agricultural University, ETH Zurich, and the Medical University of Graz investigated green tea catechins and their effects in roundworms, known as Caenorhabditis elegans (C. elegans), and isolated rodent mitochondria. Their trending paper was published in October of 2021 by Aging (Aging-US), and entitled, “Green tea catechins EGCG and ECG enhance the fitness and lifespan of Caenorhabditis elegans by complex I inhibition.”
“We have designed the current study to investigate the impact and to unveil the target of the most abundant green tea catechins, epigallocatechin gallate (EGCG) and epicatechin gallate (ECG).”
Full blog - https://www.impactjournals.com/journals/blog/aging/trending-with-impact-green-tea-enhances-fitness-and-lifespan-in-worms/
Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.203597
DOI - https://doi.org/10.18632/aging.203597
Full text - https://www.aging-us.com/article/203597/text
Correspondence to: Corina T. Madreiter-Sokolowski email: corina.madreiter@medunigraz.at and Michael Ristow email: michael-ristow@ethz.ch
Keywords: aging, reactive oxygen species, mitochondria, polyphenols, C. elegans
About Aging-US
Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Please visit our website at http://www.Aging-US.com or connect with us on:
Twitter - https://twitter.com/AgingJrnl
Facebook - https://www.facebook.com/AgingUS/
SoundCloud - https://soundcloud.com/aging-us
YouTube - https://www.youtube.com/agingus
LinkedIn - https://www.linkedin.com/company/aging
Aging-US is published by Impact Journals, LLC please visit http://www.ImpactJournals.com or connect with @ImpactJrnls
Media Contact
18009220957
MEDIA@IMPACTJOURNALS.COM