BUFFALO, NY- March 13, 2024 – A new #research paper was #published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 16, Issue 4, entitled, “Single-Cell RNA-seq reveals transcriptomic modulation of Alzheimer’s disease by activated protein C.”
Single-Cell RNA sequencing reveals changes in cell population in Alzheimer’s disease (AD) model 5xFAD (5x Familial AD mutation) versus wild type (WT) mice. In this new study, researchers Mohammad Kasim Fatmi, Hao Wang, Lily Slotabec, Changhong Wen, Blaise Seale, Bi Zhao, and Ji Li from the University of South Florida, University of Mississippi Medical Center and the G.V. (Sonny) Montgomery VA Medical Center used single-cell RNA sequencing and bioinformatic analysis to analyze the effects of APC [Activated Protein C] treatment on AD transgenic mice.
“In our investigation, we utilized transgenic mice that contain expression for five major amyloid pathologies that allow for rapid progression of AD and Aβ deposition known as 5xFAD mice.”
The returned sequencing data was processed through the 10x Genomics CellRanger platform to perform alignment and form corresponding matrix to perform bioinformatic analysis. Alterations in glial cells occurred in 5xFAD versus WT, especially increases in microglia proliferation were profound in 5xFAD. Differential expression testing of glial cells in 5xFAD versus WT revealed gene regulation. Globally, the critical genes implicated in AD progression are upregulated such as Apoe, Ctsb, Trem2, and Tyrobp.
Using this differential expression data, GO term enrichment was completed to observe possible biological processes impacted by AD progression. Utilizing anti-inflammatory and cyto-protective recombinant Activated Protein C (APC), the researchers uncovered inflammatory processes to be downregulated by APC treatment in addition to recuperation of nervous system processes. Moreover, animal studies demonstrated that administration of recombinant APC significantly attenuated Aβ burden and improved cognitive function of 5xFAD mice.
“The downregulation of highly expressed AD biomarkers in 5xFAD could provide insight into the mechanisms by which APC administration benefits AD.”
DOI - https://doi.org/10.18632/aging.205624
Corresponding authors - Bi Zhao - bizhao@usf.edu, and Ji Li - jli3@umc.edu
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.205624
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Keywords - aging, APC, Alzheimer’s disease, inflammation
About Aging-US
Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
Media Contact
18009220957
MEDIA@IMPACTJOURNALS.COM