Learning Bayesian Statistics

#115 Using Time Series to Estimate Uncertainty, with Nate Haines

Sep 17, 2024
Nate Haines, Head of Data Science Research at Ledger Investing and a PhD from Ohio State University, dives into the fascinating world of Bayesian statistics in insurance. He discusses how state space models can forecast loss ratios and the challenges of working with limited data. Haines introduces Bayesian model stacking for blending predictions, showcasing the BayesBlend Python package. He also explores the impact of external factors like economic conditions on insurance forecasting and the importance of simulation-based calibration in ensuring model integrity.
Ask episode
Chapters
Transcript
Episode notes