
L'IA aujourd'hui ! L'IA aujourd'hui épisode du 2026-01-03
Jan 3, 2026
06:37
Bonjour et bienvenue dans le podcast de l'IA par l’IA qui vous permet de rester à la page !Aujourd’hui : un modèle multimodal léger qui tourne sur portable, une interface Gemini plus visuelle, l’IA agentique à l’honneur, un guide pour doper votre pratique, la montée en puissance des TPU v7 de Google, et le parcours d’Arthur Mensch chez Mistral AI.D’abord, T5Gemma-2. Ce modèle encodeur-décodeur de la famille Gemma 3 concentre 270 millions de paramètres et fonctionne sur un ordinateur portable. Il est multimodal: texte et image sont traités ensemble via un encodeur de vision. Côté architecture, il relie les embeddings entre l’encodeur et le décodeur pour réduire les paramètres sans perdre en capacité, et fusionne l’attention auto-référentielle et l’attention croisée en une seule couche dans le décodeur, ce qui simplifie l’exécution et la parallélisation à l’inférence. Sa fenêtre contextuelle grimpe jusqu’à 128 000 tokens grâce à une attention local‑global alternée. Formé sur plus de 140 langues, il couvre des usages globaux et surpasse les Gemma 3 de taille équivalente (qui étaient textuels) en performances multimodales. Exemple concret: analyser une capture d’écran d’un tableau de bord de ventes et répondre à des questions chiffrées sans serveur dédié.Cap maintenant sur la “vue dynamique” de Gemini, une fonctionnalité expérimentale accessible via un bouton sur la version web dans certains pays, dont les États‑Unis. Plutôt qu’un simple texte, Gemini génère de petites pages interactives: images, animations, onglets. Utile pour planifier un voyage, organiser des tâches ou comparer des produits, le tout sans quitter le site de Gemini. Des limites subsistent: bugs d’affichage, zones non cliquables, et incapacité à saisir des ressentis comme le confort d’un vêtement. Cette approche illustre aussi les enjeux de données et de monétisation: aujourd’hui gratuit, ce type d’assistant pourrait intégrer demain publicités ou liens d’affiliation.Sur le terrain des usages, “IA agentique” a été élu mot numérique de l’année 2025. L’idée: des agents capables de décider et d’enchaîner des actions pour atteindre un objectif, seuls ou en coopération, avec peu d’intervention humaine. Exemples: lire les e‑mails, détecter ceux liés aux factures, extraire les données, saisir dans un logiciel comptable, puis envoyer la confirmation; ou gérer votre agenda, trouver un créneau pour réserver un restaurant selon les préférences des invités, puis ajouter l’événement avec rappel. Le vote met aussi en avant “détox numérique” et “dégafamisation”, reflet de préoccupations sur la souveraineté technologique. D’autres termes cités: hyperscaler, shadowban, vishing, algospeak, numéricovigilance, ainsi que des propositions comme cyberpunk, cyberdystopie, intellition, asservissement numérique, shadow IA, IA slop, souvent liées aux risques de désinformation et de deepfakes.Dans la même veine pratique, un guide propose d’atteindre un niveau d’usage de l’IA supérieur à 99 % des utilisateurs d’ici 2026. Les clés: une communication précise (prompting spécifique au domaine, changement de perspective, boucles d’auto‑évaluation), le “reverse prompting” pour faire expliciter le raisonnement, et des outils d’optimisation de prompts adaptés à ChatGPT ou Gemini. Choisir et maîtriser un modèle à la fois avant d’en ajouter d’autres; structurer le contexte avec des formats d’entrée cohérents; vérifier la fiabilité via contrôles automatisés complétés par une revue humaine. Traiter l’IA comme un partenaire: partir des sorties comme base, injecter votre expertise et votre style. Pour aller plus loin, orchestrer plusieurs outils et automatiser avec Zapier, Make.com ou LangChain, tout en auditant régulièrement les workflows pour éliminer les redondances et rester aligné sur vos objectifs.Côté infrastructures, Google prépare pour 2026 un déploiement massif de sa septième génération de TPU, nom de code Ironwood. L’approche passe du serveur au rack comme unité de conception: intégration matériel‑réseau‑alimentation‑logiciel au niveau système. Ironwood adopte un design à double puce pour améliorer le rendement et garde le refroidissement liquide. L’interconnexion s’appuie sur des commutateurs de circuits optiques (OCS) entre racks pour réduire la latence, la consommation et offrir une large bande passante adaptée aux entraînements longs. Chaque rack compte 64 puces; des clusters jusqu’à 144 racks permettent de faire fonctionner 9 216 TPU de façon synchrone. Des estimations évoquent environ 36 000 racks déployés en 2026 et plus de 10 000 OCS. Côté énergie: 850 à 1 000 W par puce, jusqu’à 100 kW par rack, avec distribution avancée et secours par batterie. Reste un frein: la maîtrise de la pile logicielle Google, raison pour laquelle les GPU devraient demeurer dominants pour la majorité des entreprises.Pour finir, portrait d’Arthur Mensch. Né en 1992, passé par l’École polytechnique en 2011, Télécom Paris et Paris‑Saclay, il réalise une thèse à l’Inria sur l’optimisation stochastique et l’analyse prédictive d’images cérébrales en IRM fonctionnelle. En 2020, il rejoint DeepMind, où il travaille sur grands modèles de langage et systèmes multimodaux. En 2023, il cofonde Mistral AI avec Guillaume Lample et Timothée Lacroix. L’entreprise mise sur des modèles ouverts et interopérables, s’intègre facilement chez les développeurs, signe des partenariats avec Microsoft et Nvidia et atteint en un an une valorisation de plusieurs milliards de dollars. Un parcours qui illustre l’ambition européenne en IA et la quête de souveraineté technologique.Voilà qui conclut notre épisode d’aujourd’hui. Merci de nous avoir rejoints, et n’oubliez pas de vous abonner pour ne manquer aucune de nos discussions passionnantes. À très bientôt dans L'IA Aujourd’hui !
Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
