Data Engineering Podcast

Tobias Macey
undefined
May 21, 2021 • 56min

A Holistic Approach To Data Governance Through Self Reflection At Collibra

Summary Data governance is a phrase that means many different things to many different people. This is because it is actually a concept that encompasses the entire lifecycle of data, across all of the people in an organization who interact with it. Stijn Christiaens co-founded Collibra with the goal of addressing the wide variety of technological aspects that are necessary to realize such an important and expansive process. In this episode he shares his thoughts on the balance between human and technological processes that are necessary for a well-managed data governance strategy, how Collibra is designed to aid in that endeavor, and his experiences using the platform that his company is building to help power the company. This is an excellent conversation that spans the engineering and philosophical complexities of an important and ever-present aspect of working with data. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. Your host is Tobias Macey and today I’m interviewing Stijn Christiaens about data governance in the enterprise and how Collibra applies the lessons learned from their customers to their own business Interview Introduction How did you get involved in the area of data management? Can you start by describing what you are building at Collibra and the story behind the company? Wat does "data governance" mean to you, and how does that definition inform your work at Collibra? How would you characterize the current landscape of "data governance" offerings and Collibra’s position within it? What are the elements of governance that are often ignored in small/medium businesses but which are essential for the enterprise? (e.g. data stewards, business glossaries, etc.) One of the most important tasks as a data professional is to establish and maintain trust in the information you are curating. What are the biggest obstacles to overcome in that mission? What are some of the data problems that you will only find at large or complex organizations? How does Collibra help to tame that complexity? Who are the end users of Collibra within an organization? Can you talk through the workflow and various interactions that your customers have as it relates to the overall flow of data through an organization? Can you describe how the Collibra platform is implemented? How has the scope and design of the system evolved since you first began working on it? You are currently leading a team that uses Collibra to manage the operations of the business. What are some of the most notable surprises that you have learned from being your own customer? What are some of the weak points that you have been able to identify and resolve? How have you been able to use those lessons to help your customers? What are the activities that are resistant to automation? How do you design the system to allow for a smooth handoff between mechanistic and humanistic processes? What are some of the most interesting, innovative, or unexpected ways that you have seen Collibra used? What are the most interesting, unexpected, or challenging lessons that you have learned while building and growing Collibra, and running the internal data office? When is Collibra the wrong choice? What do you have planned for the future of the platform? Contact Info LinkedIn @stichris on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Links Collibra Collibra Data Office Electrical Engineering Resistor Color Codes STAR Lab (semantics, technology, and research) Microsoft Azure Data Governance GDPR Chief Data Officer Dunbar’s Number Business Glossary Data Steward ERP == Enterprise Resource Planning CRM == Customer Relationship Management Data Ownership Data Mesh Podcast Episode The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast
undefined
May 18, 2021 • 58min

Unlocking The Power of Data Lineage In Your Platform with OpenLineage

Summary Data lineage is the common thread that ties together all of your data pipelines, workflows, and systems. In order to get a holistic understanding of your data quality, where errors are occurring, or how a report was constructed you need to track the lineage of the data from beginning to end. The complicating factor is that every framework, platform, and product has its own concepts of how to store, represent, and expose that information. In order to eliminate the wasted effort of building custom integrations every time you want to combine lineage information across systems Julien Le Dem introduced the OpenLineage specification. In this episode he explains his motivations for starting the effort, the far-reaching benefits that it can provide to the industry, and how you can start integrating it into your data platform today. This is an excellent conversation about how competing companies can still find mutual benefit in co-operating on open standards. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. When it comes to serving data for AI and ML projects, do you feel like you have to rebuild the plane while you’re flying it across the ocean? Molecula is an enterprise feature store that operationalizes advanced analytics and AI in a format designed for massive machine-scale projects without having to manage endless one-off information requests. With Molecula, data engineers manage one single feature store that serves the entire organization with millisecond query performance whether in the cloud or at your data center. And since it is implemented as an overlay, Molecula doesn’t disrupt legacy systems. High-growth startups use Molecula’s feature store because of its unprecedented speed, cost savings, and simplified access to all enterprise data. From feature extraction to model training to production, the Molecula feature store provides continuously updated feature access, reuse, and sharing without the need to pre-process data. If you need to deliver unprecedented speed, cost savings, and simplified access to large scale, real-time data, visit dataengineeringpodcast.com/molecula and request a demo. Mention that you’re a Data Engineering Podcast listener, and they’ll send you a free t-shirt. Your host is Tobias Macey and today I’m interviewing Julien Le Dem about Open Lineage, a new standard for structuring metadata to enable interoperability across the ecosystem of data management tools. Interview Introduction How did you get involved in the area of data management? Can you start by giving an overview of what the Open Lineage project is and the story behind it? What is the current state of the ecosystem for generating and sharing metadata between systems? What are your goals for the OpenLineage effort? What are the biggest conceptual or consistency challenges that you are facing in defining a metadata model that is broad and flexible enough to be widely used while still being prescriptive enough to be useful? What is the current state of the project? (e.g. code available, maturity of the specification, etc.) What are some of the ideas or assumptions that you had at the beginning of this project that have had to be revisited as you iterate on the definition and implementation? What are some of the projects/organizations/etc. that have committed to supporting or adopting OpenLineage? What problem domain(s) are best suited to adopting OpenLineage? What are some of the problems or use cases that you are explicitly not including in scope for OpenLineage? For someone who already has a lineage and/or metadata catalog, what is involved in evolving that system to work well with OpenLineage? What are some of the downstream/long-term impacts that you anticipate or hope that this standardization effort will generate? What are some of the most interesting, unexpected, or challenging lessons that you have learned while working on the OpenLineage effort? What do you have planned for the future of the project? Contact Info LinkedIn @J_ on Twitter julienledem on GitHub Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Links OpenLineage Marquez Podcast Episode Hadoop Pig Apache Parquet Podcast Episode Doug Cutting Avro Apache Arrow Service Oriented Architecture Data Lineage Apache Atlas DataHub Podcast Episode Amundsen Podcast Episode Egeria Pandas Podcast.__init__ Episode Apache Spark EXIF JSON Schema OpenTelemetry Podcast.__init__ Episode OpenTracing Superset Podcast.__init__ Episode Data Engineering Podcast Episode Iceberg Podcast Episode Great Expectations Podcast Episode dbt Podcast Episode Data Mesh Podcast Episode The map is not the territory Kafka Apache Flink Apache Storm Kafka Streams Stone Soup Apache Beam Linux Foundation AI & Data The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast
undefined
5 snips
May 14, 2021 • 1h 15min

Building Your Data Warehouse On Top Of PostgreSQL

Explore the use of Postgres as a data warehouse, including its evolution, optimizations, extensibility, and innovative use cases. Learn about the challenges and misconceptions of working with Postgres and the potential of user defined functions and gaps in data management technology.
undefined
May 11, 2021 • 54min

Making Analytical APIs Fast With Tinybird

Summary Building an API for real-time data is a challenging project. Making it robust, scalable, and fast is a full time job. The team at Tinybird wants to make it easy to turn a continuous stream of data into a production ready API or data product. In this episode CEO Jorge Sancha explains how they have architected their system to handle high data throughput and fast response times, and why they have invested heavily in Clickhouse as the core of their platform. This is a great conversation about the challenges of building a maintainable business from a technical and product perspective. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. Ascend.io — recognized as a 2021 Gartner Cool Vendor in Enterprise AI Operationalization and Engineering—empowers data teams to to build, scale, and operate declarative data pipelines with 95% less code and zero maintenance. Connect to any data source using Ascend’s new flex code data connectors, rapidly iterate on transformations and send data to any destination in a fraction of the time it traditionally takes—just ask companies like Harry’s, HNI, and Mayvenn. Sound exciting? Come join the team! We’re hiring data engineers, so head on over to dataengineeringpodcast.com/ascend and check out our careers page to learn more. Your host is Tobias Macey and today I’m interviewing Jorge Sancha about Tinybird, a platform to easily build analytical APIs for real-time data Interview Introduction How did you get involved in the area of data management? Can you start by describing what you are building at Tinybird and the story behind it? What are some of the types of use cases that your customers are focused on? What are the areas of complexity that come up when building analytical APIs that are often overlooked when first designing a system to operate on and expose real-time data? What are the supporting systems that are necessary and useful for operating this kind of system which contribute to the overall time and engineering cost beyond the baseline functionality? How is the Tinybird platform architected? How have the goals and implementation of Tinybird changed or evolved since you first began building it? What was your criteria for selecting the core building block of your platform, and how did that lead to your choice to build on top of Clickhouse? What are some of the sharp edges that you have run into while operating Clickhouse? What are some of the custom tools or systems that you have built to help deal with them? What are some of the performance challenges that an API built with Tinybird might run into? What are the considerations that users should be aware of to avoid introducing performance issues? How do you handle multi-tenancy in your platform? (e.g. separate clusters, in-database quotas, etc.) For users of Tinybird, can you talk through the workflow of getting it integrated into their platform and designing an API from their data? What are some of the most interesting, innovative, or unexpected ways that you have seen Tinybird used? What are the most interesting, unexpected, or challenging lessons that you have learned while building and growing Tinybird? When is Tinybird the wrong choice? What do you have planned for the future of the product and business? Contact Info @jorgesancha on Twitter LinkedIn jorgesancha on GitHub Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Links Tinybird Carto PostgreSQL Podcast Episode PostGIS Clickhouse Podcast Episode Kafka Tornado Podcast.__init__ Episode Redis Formula 1 Web Application Firewall The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast
undefined
May 7, 2021 • 40min

Making Spark Cloud Native At Data Mechanics

Summary Spark is one of the most well-known frameworks for data processing, whether for batch or streaming, ETL or ML, and at any scale. Because of its popularity it has been deployed on every kind of platform you can think of. In this episode Jean-Yves Stephan shares the work that he is doing at Data Mechanics to make it sing on Kubernetes. He explains how operating in a cloud-native context simplifies some aspects of running the system while complicating others, how it simplifies the development and experimentation cycle, and how you can get a head start using their pre-built Spark container. This is a great conversation for understanding how new ways of operating systems can have broader impacts on how they are being used. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Firebolt is the fastest cloud data warehouse. Visit dataengineeringpodcast.com/firebolt to get started. The first 25 visitors will receive a Firebolt t-shirt. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Jean-Yves Stephan about Data Mechanics, a cloud-native Spark platform for data engineers Interview Introduction How did you get involved in the area of data management? Can you start by giving an overview of what you are building at Data Mechanics and the story behind it? What are the operational characteristics of Spark that make it difficult to run in a cloud-optimized environment? How do you handle retries, state redistribution, etc. when instances get pre-empted during the middle of a job execution? What are some of the tactics that you have found useful when designing jobs to make them more resilient to interruptions? What are the customizations that you have had to make to Spark itself? What are some of the supporting tools that you have built to allow for running Spark in a Kubernetes environment? How is the Data Mechanics platform implemented? How have the goals and design of the platform changed or evolved since you first began working on it? How does running Spark in a container/Kubernetes environment change the ways that you and your customers think about how and where to use it? How does it impact the development workflow for data engineers and data scientists? What are some of the most interesting, unexpected, or challenging lessons that you have learned while building the Data Mechanics product? When is Spark/Data Mechanics the wrong choice? What do you have planned for the future of the platform? Contact Info LinkedIn Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Links Data Mechanics Databricks Stanford Andrew Ng Mining Massive Datasets Spark Kubernetes Spot Instances Infiniband Data Mechanics Spark Container Image Delight – Spark monitoring utility Terraform Blue/Green Deployment Spark Operator for Kubernetes JupyterHub Jupyter Enterprise Gateway The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast
undefined
May 4, 2021 • 57min

The Grand Vision And Present Reality of DataOps

Summary The Data industry is changing rapidly, and one of the most active areas of growth is automation of data workflows. Taking cues from the DevOps movement of the past decade data professionals are orienting around the concept of DataOps. More than just a collection of tools, there are a number of organizational and conceptual changes that a proper DataOps approach depends on. In this episode Kevin Stumpf, CTO of Tecton, Maxime Beauchemin, CEO of Preset, and Lior Gavish, CTO of Monte Carlo, discuss the grand vision and present realities of DataOps. They explain how to think about your data systems in a holistic and maintainable fashion, the security challenges that threaten to derail your efforts, and the power of using metadata as the foundation of everything that you do. If you are wondering how to get control of your data platforms and bring all of your stakeholders onto the same page then this conversation is for you. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. Your host is Tobias Macey and today I’m interviewing Max Beauchemin, Lior Gavish, and Kevin Stumpf about the real world challenges of embracing DataOps practices and systems, and how to keep things secure as you scale Interview Introduction How did you get involved in the area of data management? Before we get started, can you each give your definition of what "DataOps" means to you? How does this differ from "business as usual" in the data industry? What are some of the things that DataOps isn’t (despite what marketers might say)? What are the biggest difficulties that you have faced in going from concept to production with a workflow or system intended to power self-serve access to other members of the organization? What are the weak points in the current state of the industry, whether technological or social, that contribute to your greatest sense of unease from a security perspective? As founders of companies that aim to facilitate adoption of various aspects of DataOps, how are you applying the products that you are building to your own internal systems? How does security factor into the design of robust DataOps systems? What are some of the biggest challenges related to security when it comes to putting these systems into production? What are the biggest differences between DevOps and DataOps, particularly when it concerns designing distributed systems? What areas of the DataOps landscape do you think are ripe for innovation? Nowadays, it seems like new DataOps companies are cropping up every day to try and solve some of these problems. Why do you think DataOps is becoming such an important component of the modern data stack? There’s been a lot of conversation recently around the "rise of the data engineer" versus other roles in the data ecosystem (i.e. data scientist or data analyst). Why do you think that is? What are some of the most valuable lessons that you have learned from working with your customers about how to apply DataOps principles? What are some of the most interesting, unexpected, or challenging lessons that you have learned while building your respective platforms and businesses? What are the industry trends that you are each keeping an eye on to inform you future product direction? Contact Info Kevin LinkedIn kevinstumpf on GitHub @kevinstumpf on Twitter Maxime LinkedIn @mistercrunch on Twitter mistercrunch on GitHub Lior LinkedIn @lgavish on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Links Tecton Monte Carlo Superset Preset Barracuda Networks Feature Store DataOps DevOps Data Catalog Amundsen OpenLineage The Downfall of the Data Engineer Hashicorp Vault Reverse ELT The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast
undefined
Apr 27, 2021 • 47min

Self Service Data Exploration And Dashboarding With Superset

Summary The reason for collecting, cleaning, and organizing data is to make it usable by the organization. One of the most common and widely used methods of access is through a business intelligence dashboard. Superset is an open source option that has been gaining popularity due to its flexibility and extensible feature set. In this episode Maxime Beauchemin discusses how data engineers can use Superset to provide self service access to data and deliver analytics. He digs into how it integrates with your data stack, how you can extend it to fit your use case, and why open source systems are a good choice for your business intelligence. If you haven’t already tried out Superset then this conversation is well worth your time. Give it a listen and then take it for a test drive today. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. Your host is Tobias Macey and today I’m interviewing Max Beauchemin about Superset, an open source platform for data exploration, dashboards, and business intelligence Interview Introduction How did you get involved in the area of data management? Can you start by describing what Superset is? Superset is becoming part of the reference architecture for a modern data stack. What are the factors that have contributed to its popularity over other tools such as Redash, Metabase, Looker, etc.? Where do dashboarding and exploration tools like Superset fit in the responsibilities and workflow of a data engineer? What are some of the challenges that Superset faces in being performant when working with large data sources? Which data sources have you found to be the most challenging to work with? What are some anti-patterns that users of Superset might run into when building out a dashboard? What are some of the ways that users can surface data quality indicators (e.g. freshness, lineage, check results, etc.) in a Superset dashboard? Another trend in analytics and dashboard tools is providing actionable insights. How can Superset support those use cases where a business user or analyst wants to perform an action based on the data that they are being shown? How can Superset factor into a data governance strategy for the business? What are some of the most interesting, innovative, or unexpected ways that you have seen Superset used? dogfooding What are the most interesting, unexpected, or challenging lessons that you have learned from working on Superset and founding Preset? When is Superset the wrong choice? What do you have planned for the future of Superset and Preset? Contact Info LinkedIn @mistercrunch on Twitter mistercrunch on GitHub Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Links Superset Podcast.__init__ Episode Preset ASP (Active Server Pages) VBScript Data Warehouse Institute Ralph Kimball Bill Inmon Ubisoft Hadoop Tableau Looker Podcast Episode The Future of Business Intelligence Is Open Source Supercharging Apache Superset Redash Podcast.__init__ Episode Metabase Podcast Episode The Rise Of The Data Engineer AirBnB Data University Python DBAPI SQLAlchemy Druid SQL Common Table Expressions SQL Window Functions Data Warehouse Semantic Layer Amundsen Podcast Episode Open Lineage Datakin Marquez Podcast Episode Apache Arrow Podcast.__init__ Episode with Wes McKinney Apache Parquet DataHub Podcast Episode The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast
undefined
Apr 20, 2021 • 48min

Moving Machine Learning Into The Data Pipeline at Cherre

Summary Most of the time when you think about a data pipeline or ETL job what comes to mind is a purely mechanistic progression of functions that move data from point A to point B. Sometimes, however, one of those transformations is actually a full-fledged machine learning project in its own right. In this episode Tal Galfsky explains how he and the team at Cherre tackled the problem of messy data for Addresses by building a natural language processing and entity resolution system that is served as an API to the rest of their pipelines. He discusses the myriad ways that addresses are incomplete, poorly formed, and just plain wrong, why it was a big enough pain point to invest in building an industrial strength solution for it, and how it actually works under the hood. After listening to this you’ll look at your data pipelines in a new light and start to wonder how you can bring more advanced strategies into the cleaning and transformation process. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. Your host is Tobias Macey and today I’m interviewing Tal Galfsky about how Cherre is bringing order to the messy problem of physical addresses and entity resolution in their data pipelines. Interview Introduction How did you get involved in the area of data management? Started as physicist and evolved into Data Science Can you start by giving a brief recap of what Cherre is and the types of data that you deal with? Cherre is a company that connects data We’re not a data vendor, in that we don’t sell data, primarily We help companies connect and make sense of their data The real estate market is historically closed, gut let, behind on tech What are the biggest challenges that you deal with in your role when working with real estate data? Lack of a standard domain model in real estate. Ontology. What is a property? Each data source, thinks about properties in a very different way. Therefore, yielding similar, but completely different data. QUALITY (Even if the dataset are talking about the same thing, there are different levels of accuracy, freshness). HIREARCHY. When is one source better than another What are the teams and systems that rely on address information? Any company that needs to clean or organize (make sense) their data, need to identify, people, companies, and properties. Our clients use Address resolution in multiple ways. Via the UI or via an API. Our service is both external and internal so what I build has to be good enough for the demanding needs of our data science team, robust enough for our engineers, and simple enough that non-expert clients can use it. Can you give an example for the problems involved in entity resolution Known entity example. Empire state buidling. To resolve addresses in a way that makes sense for the client you need to capture the real world entities. Lots, buildings, units. Identify the type of the object (lot, building, unit) Tag the object with all the relevant addresses Relations to other objects (lot, building, unit) What are some examples of the kinds of edge cases or messiness that you encounter in addresses? First class is string problems. Second class component problems. third class is geocoding. I understand that you have developed a service for normalizing addresses and performing entity resolution to provide canonical references for downstream analyses. Can you give an overview of what is involved? What is the need for the service. The main requirement here is connecting an address to lot, building, unit with latitude and longitude coordinates How were you satisfying this requirement previously? Before we built our model and dedicated service we had a basic prototype for pipeline only to handle NYC addresses. What were the motivations for designing and implementing this as a service? Need to expand nationwide and to deal with client queries in real time. What are some of the other data sources that you rely on to be able to perform this normalization and resolution? Lot data, building data, unit data, Footprints and address points datasets. What challenges do you face in managing these other sources of information? Accuracy, hirearchy, standardization, unified solution, persistant ids and primary keys Digging into the specifics of your solution, can you talk through the full lifecycle of a request to resolve an address and the various manipulations that are performed on it? String cleaning, Parse and tokenize, standardize, Match What are some of the other pieces of information in your system that you would like to see addressed in a similar fashion? Our named entity solution with connection to knowledge graph and owner unmasking. What are some of the most interesting, unexpected, or challenging lessons that you learned while building this address resolution system? Scaling nyc geocode example. The NYC model was exploding a subset of the options for messing up an address. Flexibility. Dependencies. Client exposure. Now that you have this system running in production, if you were to start over today what would you do differently? a lot but at this point the module boundaries and client interface are defined in such way that we are able to make changes or completely replace any given part of it without breaking anything client facing What are some of the other projects that you are excited to work on going forward? Named entity resolution and Knowledge Graph Contact Info LinkedIn Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? BigQuery is huge asset and in particular UDFs but they don’t support API calls or python script Closing Announcements Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Links Cherre Podcast Episode Photonics Knowledge Graph Entity Resolution BigQuery NLP == Natural Language Processing dbt Podcast Episode Airflow Podcast.__init__ Episode Datadog Podcast Episode The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast
undefined
Apr 13, 2021 • 1h 9min

Exploring The Expanding Landscape Of Data Professions with Josh Benamram of Databand

Summary "Business as usual" is changing, with more companies investing in data as a first class concern. As a result, the data team is growing and introducing more specialized roles. In this episode Josh Benamram, CEO and co-founder of Databand, describes the motivations for these emerging roles, how these positions affect the team dynamics, and the types of visibility that they need into the data platform to do their jobs effectively. He also talks about how his experience working with these teams informs his work at Databand. If you are wondering how to apply your talents and interests to working with data then this episode is a must listen. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. Your host is Tobias Macey and today I’m interviewing Josh Benamram about the continued evolution of roles and responsibilities in data teams and their varied requirements for visibility into the data stack Interview Introduction How did you get involved in the area of data management? Can you start by discussing the set of roles that you see in a majority of data teams? What new roles do you see emerging, and what are the motivating factors? Which of the more established positions are fracturing or merging to create these new responsibilities? What are the contexts in which you are seeing these role definitions used? (e.g. small teams, large orgs, etc.) How do the increased granularity/specialization of responsibilities across data teams change the ways that data and platform architects need to think about technology investment? What are the organizational impacts of these new types of data work? How do these shifts in role definition change the ways that the individuals in the position interact with the data platform? What are the types of questions that practitioners in different roles are asking of the data that they are working with? (e.g. what is the lineage of this asset vs. what is the distribution of values in this column, etc.) How can metrics and observability data about pipelines and data systems help to support these various roles? What are the different ways of measuring data quality for the needs of these roles? How is the work you are doing at Databand informed by these changing needs? One of the big challenges caused by data systems is the varying modes of access and interaction across the different stakeholders and activities. How can data platform teams and vendors help to surface useful metrics and information across these various interfaces without forcing users into a new or unfamiliar workflow? What are some of the long-term impacts that you foresee in the data ecosystem and ways of interacting with data as a result of the current trend toward more specialized tasks? As a vendor working to provide useful context to these practitioners what are some of the most interesting, unexpected, or challenging lessons that you have learned? What do you have planned for the future of Databand? Contact Info Email Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Links Databand Website Platform Open Core More data engineering stories & best practices Atlassian Chartio Data Mesh Article Podcast Episode Grafana Metabase Superset Podcast.__init__ Episode Snowflake Podcast Episode Spark Airflow Podcast.__init__ Episode The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast
undefined
Apr 6, 2021 • 58min

Put Your Whole Data Team On The Same Page With Atlan

Summary One of the biggest obstacles to success in delivering data products is cross-team collaboration. Part of the problem is the difference in the information that each role requires to do their job and where they expect to find it. This introduces a barrier to communication that is difficult to overcome, particularly in teams that have not reached a significant level of maturity in their data journey. In this episode Prukalpa Sankar shares her experiences across multiple attempts at building a system that brings everyone onto the same page, ultimately bringing her to found Atlan. She explains how the design of the platform is informed by the needs of managing data projects for large and small teams across her previous roles, how it integrates with your existing systems, and how it can work to bring everyone onto the same page. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. Your host is Tobias Macey and today I’m interviewing Prukalpa Sankar about Atlan, a modern data workspace that makes collaboration among data stakeholders easier, increasing efficiency and agility in data projects Interview Introduction How did you get involved in the area of data management? Can you start by giving an overview of what you are building at Atlan and some of the story behind it? Who are the target users of Atlan? What portions of the data workflow is Atlan responsible for? What components of the data stack might Atlan replace? How would you characterize Atlan’s position in the current data ecosystem? What makes Atlan stand out from other systems for data cataloguing, metadata management, or data governance? What types of data assets (e.g. structured vs unstructured, textual vs binary, etc.) is Atlan designed to understand? Can you talk through how Atlan is implemented? How have the goals and design of the platform changed or evolved since you first began working on it? What are some of the early assumptions that you have had to revisit or reconsider? What is involved in getting Atlan deployed and integrated into an existing data platform? Beyond the technical aspects, what are the business processes that teams need to implement to be successful when incorporating Atlan into their systems? Once Atlan is set up, what is a typical workflow for an individual and their team to collaborate on a set of data assets, or building out a new processing pipeline? What are some useful steps for introducing all of the stakeholders to the system and workflow? What are the available extension points for managing data in systems that aren’t supported by Atlan out of the box? What are some of the most interesting, innovative, or unexpected ways that you have seen Atlan used? What are the most interesting, unexpected, or challenging lessons that you have learned while building Atlan? When is Atlan the wrong choice? What do you have planned for the future of the product? Contact Info LinkedIn @prukalpa on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Links Atlan India’s National Data Platform World Economic Forum UN Gates Foundation GitHub Figma Snowflake Redshift Databricks DBT Sisense Looker Apache Atlas Immuta DataHub Datakin Aapache Ranger Great Expectations Trino Airflow Dagster Privacera Databand Cloudformation Grafana Deequ We Failed to Set Up a Data Catalog 3x. Here’s Why. Analysing the analysers book OpenAPI The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app