Cardionerds: A Cardiology Podcast

CardioNerds
undefined
Jun 23, 2023 • 2sec

312. Case Report: Life in the Fast Lane Leads to a Cardiac Conundrum – Los Angeles County + University of Southern California

CardioNerds (Drs. Amit Goyal and Dan Ambinder) join Dr. Emily Lee (LAC+USC Internal medicine resident) and Dr. Charlie Lin (LAC+USC Cardiology fellow) as the discuss an important case of stimulant-related (methamphetamine) cardiovascular toxicity that manifested in right ventricular dysfunction due to severe pulmonary hypertension. Dr. Jonathan Davis (Director, Heart Failure Program at Zuckerberg San Francisco General Hospital and Trauma Center) provides the ECPR for this episide. Audio editing by CardioNerds Academy Intern, student doctor Akiva Rosenzveig. With the ongoing methamphetamine epidemic, the incidence of stimulant-related cardiovascular toxicity continues to grow. We discuss the following case: A 36-year-old man was hospitalized for evaluation of dyspnea and volume overload in the setting of previously untreated, provoked deep venous thrombosis. Transthoracic echocardiogram revealed severe right ventricular dysfunction as well as signs of pressure and volume overload. Computed tomography demonstrated a prominent main pulmonary artery and ruled out pulmonary embolism. Right heart catheterization confirmed the presence of pre-capillary pulmonary arterial hypertension without demonstrable vasoreactivity. He was prescribed sildenafil to begin management of methamphetamine-associated cardiomyopathy and right ventricular dysfunction manifesting as severe pre-capillary pulmonary hypertension. CardioNerds is collaborating with Radcliffe Cardiology and US Cardiology Review journal (USC) for a ‘call for cases’, with the intention to co-publish high impact cardiovascular case reports, subject to double-blind peer review. Case Reports that are accepted in USC journal and published as the version of record (VOR), will also be indexed in Scopus and the Directory of Open Access Journals (DOAJ). CardioNerds Case Reports PageCardioNerds Episode PageCardioNerds AcademyCardionerds Healy Honor Roll CardioNerds Journal ClubSubscribe to The Heartbeat Newsletter!Check out CardioNerds SWAG!Become a CardioNerds Patron! Case Media - stimulant-related (methamphetamine) cardiovascular toxicity Pearls - stimulant-related (methamphetamine) cardiovascular toxicity 1. Methamphetamine, and stimulants in general, can have a multitude of effects on the cardiovascular and pulmonary systems. Effects of methamphetamine are thought to be due to catecholamine toxicity with direct effects on cardiac and vascular tissues. Acutely, methamphetamine can cause vascular constriction and vasospasm, while chronic exposure is associated with endothelial damage. Over time, methamphetamine can cause pulmonary hypertension, atherosclerosis, cardiac arrhythmias, and dilated cardiomyopathy. 2. Methamphetamines are the second most commonly misused substances worldwide after opiates. Patients with methamphetamine-associated pulmonary arterial hypertension (PAH) have more severe pulmonary vascular disease, more dilated and dysfunctional right ventricles, and worse prognoses when compared to patients with idiopathic PAH. Additionally, patients with methamphetamine-associated cardiomyopathy and PAH have significantly worse outcomes and prognoses when compared to those with structurally normal hearts without evidence of PAH. Management includes multidisciplinary support, complete cessation of methamphetamine use, and guideline-directed treatment of PAH. 3. The diagnosis of pulmonary hypertension (PH) begins with the history and physical, followed by confirmatory testing using echocardiography and invasive hemodynamics (right heart catheterization). Initial serological evaluation may include routine biochemical, hematologic, endocrine, hepatic, and infectious testing. Though PH is traditionally diagnosed and confirmed in a two-step, echocardiogram-followed-by-catheterization model, other diagnostics often include electrocardiography, blood gas analysis, spirometry, ventilation/perfusion assessment,
undefined
Jun 22, 2023 • 9min

311. Guidelines: 2021 ESC Cardiovascular Prevention – Question #29 with Dr. Laurence Sperling

The following question refers to Section 5.2 of the 2021 ESC CV Prevention Guidelines. The question is asked by MGH medicine resident Dr. Christian Faaborg-Andersen, answered first by Dr. Jessie Holtzman, and then by expert faculty Dr. Laurence Sperling.Dr. Laurence Sperling is the Katz Professor in Preventive Cardiology at the Emory University School of Medicine and Founder of Preventive Cardiology at the Emory Clinic. Dr. Sperling was a member of the writing group for the 2018 Cholesterol Guidelines, serves as Co-Chair for the ACC's Cardiometabolic and Diabetes working group, and is Co-Chair of the WHF Roadmap for Cardiovascular Prevention in Diabetes.The CardioNerds Decipher The Guidelines Series for the 2021 ESC CV Prevention Guidelines represents a collaboration with the ACC Prevention of CVD Section, the National Lipid Association, and Preventive Cardiovascular Nurses Association.Enjoy this Circulation 2022 Paths to Discovery article to learn about the CardioNerds story, mission, and values. Question #29 What percentage of the European population currently meets the recommended physical activity guidelines (150 minutes moderate-intensity activity weekly or 75 minutes vigorous-intensity activity weekly)?A<10%B10-25%C25-50%D50-75%E>75% Answer #29 ExplanationThe correct answer is A: <10% of the European population currently meets the recommended physical activity guidelines.The American Heart Association, European Society of Cardiology, and World Health Organization all share the recommendation that adults should engage in 150 minutes per week of moderate-intensity physical activity or 75 minutes per week of vigorous-intensity activity. They recognize that additional health benefits may be garnered from incremental increases to 300 minutes per week of moderate intensity activity or 150 minutes per week of vigorous intensity activity, with a recommendation to include both aerobic and muscular strength training activities.According to the WHO, physical inactivity is the 4th leading cause of death in the world. The statistics regarding physical inactivity are staggering. Recent studies have shown that <10% of the European population meets the minimum recommended levels of physical activity. Similarly, ¼ adults and ¾ adolescents (aged 11-17) do not currently meet the global recommendations for physical activity. The World Health Organization has created a Global Action Plan on Physical Activity 2018-2030 with the goal to achieve a 15% relative reduction in the global prevalence of physical inactivity by 2030.Society level interventions to increase physical activity have been proposed including school-based activity programs, improved accessibility of exercise facilities across the socioeconomic spectrum, and governmental consideration of physical activity when designing cities (i.e. including pedestrian and cycling lanes). Other policy suggestions with varying levels of evidence include focused media campaigns, economic incentives, targeting labeling of physical activity opportunities, and work-place wellness programs.Main TakeawayDespite growing awareness of the health consequences of sedentary behavior, fewer than 10% of adults currently meet the minimum recommended quantity of physical activity. Public health leaders may continue to consider novel legislative initiatives to augment physical activity on a societal level with architectural design and financial incentives.Guideline Loc.Section 5.2 CardioNerds Decipher the Guidelines - 2021 ESC Prevention SeriesCardioNerds Episode PageCardioNerds AcademyCardionerds Healy Honor RollCardioNerds Journal ClubSubscribe to The Heartbeat Newsletter!Check out CardioNerds SWAG!Become a CardioNerds Patron!
undefined
6 snips
Jun 19, 2023 • 18min

310. Guidelines: 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure – Question #23 with Dr. Anu Lala

The following question refers to Section 9.3 of the 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure.The question is asked by Keck School of Medicine USC medical student & CardioNerds Intern Hirsh Elhence, answered first by Cedars Sinai medicine resident, soon to be Vanderbilt Cardiology Fellow, and CardioNerds Academy Faculty Dr. Breanna Hansen, and then by expert faculty Dr. Anu Lala.Dr. Lala is an advanced heart failure and transplant cardiologist, associate professor of medicine and population health science and policy, Director of Heart Failure Research, and Program Director for the Advanced Heart Failure and Transplant fellowship training program at Mount Sinai. Dr. Lala is Deputy Editor for the Journal of Cardiac Failure. Dr. Lala has been a champion and role model for CardioNerds. She has been a PI mentor for the CardioNerds Clinical Trials Network and continues to serve in the program’s leadership. She is also a faculty mentor for this very 2022 heart failure decipher the guidelines series.The Decipher the Guidelines: 2022 AHA / ACC / HFSA Guideline for The Management of Heart Failure series was developed by the CardioNerds and created in collaboration with the American Heart Association and the Heart Failure Society of America. It was created by 30 trainees spanning college through advanced fellowship under the leadership of CardioNerds Cofounders Dr. Amit Goyal and Dr. Dan Ambinder, with mentorship from Dr. Anu Lala, Dr. Robert Mentz, and Dr. Nancy Sweitzer. We thank Dr. Judy Bezanson and Dr. Elliott Antman for tremendous guidance.Enjoy this Circulation 2022 Paths to Discovery article to learn about the CardioNerds story, mission, and values. Question #23 Mrs. Hart is a 63-year-old woman with a history of non-ischemic cardiomyopathy and heart failure with reduced ejection fraction (LVEF 20-25%) presenting with 5 days of worsening dyspnea and orthopnea.   At home, she takes carvedilol 12.5mg BID, sacubitril-valsartan 24-46mg BID, empagliflozin 10mg daily, and furosemide 40mg daily.   On admission, her exam revealed a blood pressure of 111/79 mmHg, HR 80 bpm, and SpO2 94%. Her cardiovascular exam was significant for a regular rate and rhythm with an audible S3, JVD to 13 cm H2O, bilateral lower extremity pitting edema with warm extremities and 2+ pulses throughout.  What initial dose of diuretics would you give her? A Continue home Furosemide 40 mg PO B Start Metolazone 5 mg PO C Start Lasix 100 mg IV D Start Spironolactone Answer #23 Explanation The correct answer is C – start Furosemide 100 mg IV. This is the most appropriate choice because patients with HF admitted with evidence of significant fluid overload should be promptly treated with intravenous loop diuretics to improve symptoms and reduce morbidity (Class 1, LOE B-NR). Intravenous loop diuretic therapy provides the most rapid and effective treatment for signs and symptoms of congestion. Titration of diuretics has been described in multiple recent trials of patients hospitalized with HF, often initiated with at least 2 times the daily home diuretic dose (mg to mg) administered intravenously. Titration to achieve effective diuresis may require doubling of initial doses, adding a thiazide diuretic, or adding an MRA that has diuretic effects in addition to its cardiovascular benefits. Choice A is incorrect as continuing oral loop diuretics is not recommended for acute decongestion. Moreover, Ms. Hart has become congested despite her home, oral diuretic regimen. Choice B and D are incorrect as starting a thiazide diuretic or a mineralocorticoid receptor antagonist are not first-line therapy for acute HF. Rather, in patients hospitalized with HF when diuresis is inadequate to relieve symptoms and signs of congestion, it is reasonable to intensify the diuretic regimen using either: a.
undefined
Jun 18, 2023 • 32min

309. Atrial Fibrillation: Situational Assessment of Stroke and Bleeding Risk with Dr. Hafiza Khan

Dr. Daniel Ambinder (CardioNerds Co-Founder), Dr. Kelly Arps (Series Co-Chair and EP fellow at Duke University), Dr. Stephanie Fuentes Rojas (FIT Lead and EP fellow at Houston Methodist), and Dr. Ingrid Hsiung (Cardiology Fellow at Baylor Scott & White Health) discuss situational assessment of stroke and bleeding risk with expert faculty Dr. Hafiza Khan (Electrophysiologist at Baylor Scott & White Health). In this episode, we discuss stroke and bleeding risk in specific situations such as prior to cardioversion, triggered episodes, and perioperatively. These are scenarios that are commonly encountered and pose specific challenges. Episode notes were drafted by Dr. Stephanie Fuentes. Audio editing by CardioNerds Academy Intern, Dr. Maryam Barkhordarian. This CardioNerds Atrial Fibrillation series is a multi-institutional collaboration made possible by contributions of stellar fellow leads and expert faculty from several programs, led by series co-chairs, Dr. Kelly Arps and Dr. Colin Blumenthal. This series is supported by an educational grant from the Bristol Myers Squibb and Pfizer Alliance. All CardioNerds content is planned, produced, and reviewed solely by CardioNerds. We have collaborated with VCU Health to provide CME. Claim free CME here! Disclosures: Dr. Ellis discloses grant or research support from Boston Scientific, Abbott-St Jude, advisor for Atricure and Medtronic. CardioNerds Atrial Fibrillation PageCardioNerds Episode PageCardioNerds AcademyCardionerds Healy Honor Roll CardioNerds Journal ClubSubscribe to The Heartbeat Newsletter!Check out CardioNerds SWAG!Become a CardioNerds Patron! Pearls and Quotes - Atrial Fibrillation: Situational Assessment of Stroke and Bleeding Risk In patients with persistent atrial fibrillation with tachycardia induced cardiomyopathy, timely restoration of normal rhythm is important. In patients not on established oral anticoagulation one option is to wait 3 weeks on oral anticoagulation prior to considering cardioversion. Another option is to pursue TEE prior to cardioversion as TEE is currently the gold standard imaging modality to exclude a LAA thrombus. Following cardioversion (chemical or electrical), anticoagulation must not be interrupted for 4 weeks due to atrial stunning. This is especially true for patients who have been in atrial fibrillation for an extended period of time. Individualizing assessment of stroke and bleeding risk is imperative when determining perioperative anticoagulation (AC) management. ACC has a helpful app (ManageAnticoag App) to make this easier. When considering AC in triggered atrial fibrillation (e.g., pneumonia, sepsis), it is important to consider the substrate that made the patient susceptible to developing atrial fibrillation. AC is favored in patients with high CHA2DS2-VAsC score and many traditional risk factors for atrial fibrillation as they are at high risk for future development of atrial fibrillation. Atrial fibrillation is a marker of poor outcomes in patients who have undergone coronary artery bypass graft (CABG) surgery. It is unclear if patients should be started on long-term AC for new onset atrial fibrillation after CABG regardless of risk factors. This is currently being investigated in the PACES trial. Notes - Atrial Fibrillation: Situational Assessment of Stroke and Bleeding Risk How do we choose an imaging modality for excluding LAA thrombus exclusion prior to cardioversion? TEE is the gold standard. It also provides other information that is important for management of atrial fibrillation (e.g. LA size/volume, presence/degree of mitral regurgitation/stenosis, ejection fraction). Gated cardiac CTA may have a growing role for evaluation of LAA thrombus. What is the data behind the recommendation for uninterrupted AC following cardioversion and what is atrial stunning? All patients should be anticoagulated for four weeks after cardioversion,
undefined
4 snips
Jun 12, 2023 • 9min

308. Guidelines: 2021 ESC Cardiovascular Prevention – Question #28 with Dr. Roger Blumenthal

The following question refers to Section 4.7 and Table 18 of the 2021 ESC CV Prevention Guidelines. The question is asked by CardioNerds Academy Intern Student Dr. Shivani Reddy, answered first by Fellow at Johns Hopkins Dr. Rick Ferraro, and then by expert faculty Dr. Roger Blumenthal.Dr. Roger Blumenthal is professor of medicine at Johns Hopkins where he is Director of the Ciccarone Center for the Prevention of Cardiovascular Disease. He was instrumental in developing the 2018 ACC/AHA CV Prevention Guidelines. Dr. Blumenthal has also been an incredible mentor to CardioNerds from our earliest days.The CardioNerds Decipher The Guidelines Series for the 2021 ESC CV Prevention Guidelines represents a collaboration with the ACC Prevention of CVD Section, the National Lipid Association, and Preventive Cardiovascular Nurses Association.Enjoy this Circulation 2022 Paths to Discovery article to learn about the CardioNerds story, mission, and values. Question #28 Mr. A. C. is a 78-year-old gentleman with a long-standing history of HTN receiving antihypertensive medications & dietary management for blood pressure control. What is the target diastolic blood pressure recommendation for all treated patients such as Mr. A.C.?A< 80 mmHgB< 90 mmHgC< 70 mmHgD< 95 mmHgE< 100 mmHg Answer #28 Explanation The correct answer is A: DBP < 80 mmHg Blood pressure treatment targets: when drug treatment is used, the aim is to control BP to target within 3 months. Blood pressure treatment targets in the 2021 ESC Prevention guidelines are more aggressive than previously recommended, as evidence now suggests the previously recommended targets were too conservative, especially for older patients. The magnitude of BP lowering is the most important driver of benefit. ·       It is recommended that the first objective of treatment is to lower BP to <140/90 mmHg in all patients, and that subsequent BP targets are tailored to age and specific comorbidities (Class 1). ·       In treated patients aged 18-69 years, it is recommended that SBP should ultimately be lowered to a target range of 120 – 130 mmHg in most patients (Class 1). ·       In treated patients aged ≥70 years, it is recommended that SBP should generally be targeted to <140 and down to 130 mmHg if tolerated (Class 1). ·       In all treated patients, DBP is recommended to be lowered to <80 mmHg (Class I). This change in the BP target range for older people compared with the 2016 ESC prevention guidelines is supported by evidence that these treatment targets are safely achieved in many older patients and are associated with significant reductions in the risk of major stroke, HF, and CV death. It also takes into account that the even lower SBP in the intensively treated group in SPRINT (Systolic Blood Pressure Intervention Trial) (mean 124 mmHg) probably reflects a conventional office SBP range of 130-139 mmHg. It is recognized, however, that the evidence supporting more strict targets is less strong for very old people (>80 years) and those who are frail. Also, in these older and especially frail patients, it may be difficult to achieve the recommended target BP range due to poor tolerability or adverse effects, and high-quality measurement and monitoring for tolerability and adverse effects is especially important in these groups. Main Takeaway The first step in HTN management in all groups is a reduction to SBP < 140 mmHg and DBP < 80 mmHg, with further targets depending on age and comorbidities as specified by Table 18 of the 2021 ESC Prevention Guidelines. Guideline Loc. 1.     4.7.5.3 page 3285 2.     Table 18 page 3287 CardioNerds Decipher the Guidelines - 2021 ESC Prevention SeriesCardioNerds Episode PageCardioNerds AcademyCardionerds Healy Honor RollCardioNerds Journal ClubSubscribe to The Heartbeat Newsletter!Check out CardioNerds SWAG!Become a CardioNerds Patron!
undefined
Jun 9, 2023 • 16min

307. Guidelines: 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure – Question #22 with Dr. Prateeti Khazanie

The following question refers to Section 8.3 of the 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure. The question is asked by Western Michigan University medical student & CardioNerds Intern Shivani Reddy, answered first by University of Southern California cardiology fellow and CardioNerds FIT Trialist Dr. Michael Francke, and then by expert faculty Dr. Prateeti Khazanie. Dr. Khazanie is an associate professor and advanced heart failure and transplant Cardiologist at the University of Colorado. Dr. Khazanie is an author on the 2022 ACC/AHA/HFSA HF Guidelines, the 2021 HFSA Universal Definition of Heart Failure, and multiple scientific statements. The Decipher the Guidelines: 2022 AHA / ACC / HFSA Guideline for The Management of Heart Failure series was developed by the CardioNerds and created in collaboration with the American Heart Association and the Heart Failure Society of America. It was created by 30 trainees spanning college through advanced fellowship under the leadership of CardioNerds Cofounders Dr. Amit Goyal and Dr. Dan Ambinder, with mentorship from Dr. Anu Lala, Dr. Robert Mentz, and Dr. Nancy Sweitzer. We thank Dr. Judy Bezanson and Dr. Elliott Antman for tremendous guidance. Enjoy this Circulation 2022 Paths to Discovery article to learn about the CardioNerds story, mission, and values. Clinical Trials Talks Question #22 You are taking care of a 34-year-old man with chronic systolic heart failure from NICM with LVEF 20% s/p CRT-D. The patient was admitted 1 week prior with acute decompensated heart failure. Despite intravenous diuretics the patient developed acute kidney injury, and ultimately placed on intravenous inotropes on which he now seems dependent. He has been following up with an advanced heart failure specialist as an outpatient and has been undergoing evaluation for heart transplantation, which was subsequently completed in the hospital.   His exam is notable for an elevated JVP, a III/VI holosystolic murmur, and warm extremities with bilateral 1+ edema. His most recent TTE shows LVEF 20%, moderate MR, moderate-severe TR and estimated RVSP 34 mmHg. His most recent laboratory data shows Na 131 mmol/L, Cr 1.2 mg/dL, and lactate 1.6 mmol/L. Pulmonary artery catheter shows RA 7 mmHg, PA 36/15 mmHg, PCWP 12 mmHg, CI 2.4 L/min/m2 and SVR 1150 dynes*sec/cm5.   The patient was presented at transplant selection committee and approved for listing for orthotopic heart transplant. What is the most appropriate next step in the management of this patient? A Refer patient for transcatheter edge-to-edge repair for MR B Continue IV inotropes as a bridge-to-transplant C Refer patient for tricuspid valve replacement D Initiate 1.5L fluid restriction Answer #22 Explanation The correct answer is B – continue IV inotropes as a bridge-to-transplant. Positive inotropic agents may improve hemodynamic status, but have not been shown to improve survival in patients with HF. These agents may help HF patients who are refractory to other therapies and are suffering consequences from end-organ-hypoperfusion. Our patient is admitted with worsening advanced heart failure requiring intravenous inotropic support. He has been appropriately evaluated and approved for heart transplant. He has demonstrated the requirement of continuous inotropic support to maintain perfusion. In patients such as this with advanced (stage D) HF refractory to GDMT and device therapy who are eligible for and awaiting MCS or cardiac transplantation, continuous intravenous inotropic support is reasonable as “bridge therapy” (Class 2a, LOE B-NR). Continuous IV inotropes also have a Class 2b indication (LOE B-NR) in select patients with stage D HF despite optimal GDMT and device therapy who are ineligible for either MCS or cardiac transplantation, as palliative therapy for symptom control and improvement in functio...
undefined
25 snips
Jun 8, 2023 • 1h

306. Decompensated Right Ventricular Failure in Pulmonary Arterial Hypertension with Dr. Mardi Gomberg-Maitland and Dr. Rachel Damico

The CardioNerds and Pulm PEEPs have joined forces to co-produce this important episode, delving into the management of decompensated right ventricular failure in pulmonary arterial hypertension. Joining us for this informative discussion are Pulm PEEPs co-founders, Dr. David Furfaro and Dr. Kristina Montemayor, along with Dr. Leonid Mirson (Internal Medicine Resident at Johns Hopkins Osler Medical Residency and Associate Editor of Pulm PEEPs), Dr. Bavya Varma (Internal Medicine Resident at Johns Hopkins, rising Cardiology Fellow at NYU, and CardioNerds Academy graduate), Dr. Mardi Gomberg-Maitland (Medical Director of the Pulmonary Hypertension Program at George Washington Hospital), and Dr. Rachel Damico (Pulmonologist and Associate Professor of Medicine at Johns Hopkins Hospital). Audio editing by CardioNerds Academy Intern, student doctor Adriana Mares. Enjoy this Circulation 2022 Paths to Discovery article to learn about the CardioNerds story, mission, and values. CardioNerds Heart Success Series PageCardioNerds Episode PageCardioNerds AcademyCardionerds Healy Honor Roll CardioNerds Journal ClubSubscribe to The Heartbeat Newsletter!Check out CardioNerds SWAG!Become a CardioNerds Patron! Show notes - Decompensated Right Ventricular Failure in Pulmonary Arterial Hypertension A 21-year-old woman with a past medical history notable for congenital heart disease (primum ASD and sinus venosus with multiple surgeries) complicated by severe PAH on home oxygen, sildenafil, ambrisentan, and subcutaneous treprostinil is presenting with palpitations, chest pain, and syncope. She presented as a transfer from an outside ED where she arrived in an unknown tachyarrhythmia and had undergone DCCV due to tachycardia into the 200s and hypotension. On arrival at our hospital, she denied SOB but did endorse nausea, leg swelling, and poor medication adherence. Her initial vitals were notable for a BP of 80/50, HR 110, RR 25, and saturating 91% on 5L O2.  On exam, she was uncomfortable appearing but mentating well. She had cool extremities with 1-2+ LE edema. Her JVP was 15cm H2O. She has an RV Heave and 2/6 systolic murmur. Her lungs were clear bilaterally. Her labs were notable for Cr 2.0, an anion gap metabolic acidosis (HCO3 = 11), elevated lactate (4.1), elevated troponin to 14,  and a pro-BNP of ~5000.  Her CBC was unremarkable. Her EKG demonstrated 2:1 atrial flutter at a rate of 130. Diagnosing RV failure in patients with PH: RV dysfunction and RV failure are two separate entities. RV dysfunction can be measured on echocardiography, but RV failure can be thought of as a clinical syndrome where there is evidence of RV dysfunction and elevated right sided filling pressures. RV failure is a spectrum and can present with a range of manifestations from evidence of R sided volume overload and markers of organ dysfunction, all the way to frank cardiogenic shock. Most patients with RV failure are not in overt shock. One of the first signs of impending shock in patients with RV failure is the development of new or worsening hypoxemia. Patients with decompensated RV failure approaching shock often do not present with symptoms classic for LV low flow state. Instead, hypoxia 2/2 VQ mismatching may be the first sign and they can be otherwise well appearing. Particularly because patients with PH tend to be younger, they can often appear compensated until they rapidly decompensate. Causes of decompensation for patients with RV dysfunction and PH: Iatrogenesis (inadvertent cessation of pulmonary vasodilators by providers, surgery if providers are not familiar with risks of anesthesia), non-adherence to pulmonary vasodilators (either due to affordability issues or other reasons), infections, arrhythmias (particularly atrial arrhythmias), and progression of underlying disease. Patients with atrial arrhythmias (atrial flutter or atrial fibrillation) and pulmonary hypertension do not tolerate the loss of...
undefined
Jun 6, 2023 • 13min

305. Guidelines: 2021 ESC Cardiovascular Prevention – Question #27 with Dr. Kim Williams

The following question refers to Section 4.3 of the 2021 ESC CV Prevention Guidelines. The question is asked by CardioNerds Academy Intern Dr. Maryam Barkhordarian, answered first by medicine resident CardioNerds Academy House Chief Dr. Ahmed Ghoneem, and then by expert faculty Dr. Kim Williams.Dr. Williams is Chief of the Division of Cardiology and is Professor of Medicine and Cardiology at Rush University Medical Center. He has served as President of ASNC, Chairman of the Board of the Association of Black Cardiologists (ABC, 2008-2010), and President of the American College of Cardiology (ACC, 2015-2016). The CardioNerds Decipher The Guidelines Series for the 2021 ESC CV Prevention Guidelines represents a collaboration with the ACC Prevention of CVD Section, the National Lipid Association, and Preventive Cardiovascular Nurses Association. Enjoy this Circulation 2022 Paths to Discovery article to learn about the CardioNerds story, mission, and values. Question #27 Mr. O is a 48-year-old man with a past medical history significant for obesity (BMI is 42kg/m2), hypertension, type 2 diabetes mellitus, and hypercholesterolemia. His calculated ASCVD risk score today is 18.8%. You counsel him on the importance of weight loss in the context of CVD risk reduction. Which of the following weight loss recommendations is appropriate?AMaintaining a weight loss of at least 25% from baseline is required to influence blood pressure, cholesterol, and glycemic control. BHypocaloric diets lead to short term weight loss, but a healthy diet should be maintained over time to reduce CVD risk.CLiraglutide can be used to induce weight loss, as an alternative to diet and exercise.DBariatric surgery is effective for weight loss but has no ASCVD risk reduction benefit. Answer #27 Explanation The correct answer is B. Energy restriction is the cornerstone of management of obesity. All the different types of hypocaloric diets achieve similar short-term weight loss, but these effects tend to diminish by 12 months. It is a class I recommendation to maintain a healthy diet over time to achieve CVD risk reduction. The Mediterranean diet is an example of a diet that can have persistent CV benefit beyond the 12 months. Choice A is incorrect because maintaining even a moderate weight loss of 5 – 10% from baseline has favorable effects on risk factors including blood pressure, cholesterol, and glycemic control, as well as on premature all-cause mortality. Choice C is incorrect because medications approved as aids to weight loss (such as liraglutide, orlistat and naltrexone/bupropion) may be used in addition to lifestyle measures to achieve weight loss and maintenance; they are not alternatives to a healthy lifestyle. Meta-analysis of medication-assisted weight loss found favorable effects on BP, glycemic control, and ASCVD mortality. Choice D is incorrect because patients undergoing bariatric surgery had over 50% lower risks of total ASCVD and cancer mortality compared with people of similar weight who did not have surgery. Bariatric surgery should be considered for obese high-risk individuals when lifestyle change does not result in maintained weight loss (Class IIa). The ACC/AHA guidelines focused primarily on lifestyle interventions for obesity and had no specific recommendations for bariatric surgery or medication-assisted weight loss. Main Takeaway Weight reduction (even as low as 5-10% from baseline) and long-term maintenance of a healthy diet are recommended to improve the CVD risk profile of overweight and obese people. Medication and/or bariatric surgery may have a useful adjunctive role in some patients. Guideline Loc. Section 4.3.3 CardioNerds Decipher the Guidelines - 2021 ESC Prevention SeriesCardioNerds Episode PageCardioNerds AcademyCardionerds Healy Honor RollCardioNerds Journal ClubSubscribe to The Heartbeat Newsletter!
undefined
May 31, 2023 • 16min

304. Guidelines: 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure – Question #21 with Dr. Nancy Sweitzer

The following question refers to Section 7.6 of the 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure.The question is asked by premedical student and CardioNerds Intern Pacey Wetstein, answered first by Mayo Clinic Cardiology Fellow and CardioNerds Academy Chief Dr. Teodora Donisan, and then by expert faculty Dr. Nancy Sweitzer.Dr. Sweitzer is Professor of Medicine, Vice Chair of Clinical Research for the Department of Medicine, and Director of Clinical Research for the Division of Cardiology at Washington University School of Medicine. She is the editor-in-chief of Circulation: Heart Failure. Dr. Sweitzer is a faculty mentor for this Decipher the HF Guidelines series.The Decipher the Guidelines: 2022 AHA / ACC / HFSA Guideline for The Management of Heart Failure series was developed by the CardioNerds and created in collaboration with the American Heart Association and the Heart Failure Society of America. It was created by 30 trainees spanning college through advanced fellowship under the leadership of CardioNerds Cofounders Dr. Amit Goyal and Dr. Dan Ambinder, with mentorship from Dr. Anu Lala, Dr. Robert Mentz, and Dr. Nancy Sweitzer. We thank Dr. Judy Bezanson and Dr. Elliott Antman for tremendous guidance.Enjoy this Circulation 2022 Paths to Discovery article to learn about the CardioNerds story, mission, and values. Clinical Trials Talks Question #21 Ms. Smith is a 56-year-old woman following up in the cardiology clinic for a history of heart failure with reduced ejection fraction. Two years ago, she was diagnosed with non-ischemic cardiomyopathy with a left ventricular ejection fraction (LVEF) of 30%. Over time, she was initiated and optimized on guideline directed medical therapy. She is currently on Carvedilol 12.5 mg BID, Sacubitril/Valsartan 49/51 mg BID, Spironolactone 25 mg daily, Empagliflozin 10 mg daily, and Furosemide PRN for weight gain.   On today’s visit, her BP is 110/80 mmHg, and her HR is 67 bpm. Labs show a creatinine of 0.9 mg/dL, potassium of 5.1 mEq/L, NT-proBNP of 150 ng/L, and a HbA1c of 5.8%. Follow up transthoracic echocardiogram showed an improvement in LVEF to 55%. What are the most appropriate therapy recommendations for Ms. Smith? A Discontinue spironolactone B Discontinue empagliflozin C Decrease the dose of carvedilol D Continue current therapy Answer #21 The correct answer is D – continue current therapy. The patient described above was initially diagnosed with HFrEF and experienced significant symptomatic improvement with GDMT, so she now has heart failure with improved ejection fraction (HFimpEF). In patients with HFimpEF after treatment, GDMT should be continued to prevent relapse of HF and LV dysfunction, even in patients who may become asymptomatic (Class 1, LOE B-R). Although symptoms, functional capacity, LVEF and reverse remodeling can improve with GDMT, structural abnormalities of the LV and its function do not fully normalize, causing symptoms and biomarker changes to persist or recur if treatment is deescalated. Improvements in EF do not always reflect sustained recovery; rather, they signify remission.   Of note, HF relapse can be defined by at least 1 of the following: o   A drop in the EF by >10% and to < 50% o   An increase in LVEDV by >10% and to higher than the normal range o   A 2-fold rise in NT-proBNP concentration and to > 400 ng/L o   Clinical evidence of HF on examination Choice A is incorrect as it would be incorrect to discontinue spironolactone. A potassium of 5.1 is still within the acceptable limit in a patient who has been on Spironolactone for two years, and this medication is an important part of GDMT for HFrEF.   Despite the improvement in Hb A1c, empagliflozin should be continued for heart failure with improved ejection fraction, as it is part of routine GDMT of HFrEF even in the absence of diabetes.
undefined
31 snips
May 29, 2023 • 42min

303. CCC: Management of Ventricular Tachycardia and Electrical Storm in the CICU with Dr. Janice Chyou

CardioNerds Co-Founder, Dr. Amit Goyal, along with Series Co-Chairs, Dr. Yoav Karpenshif and Dr. Eunice Dugan, and episode Lead, Dr. Sean Dikdan, had the opportunity to expand their knowledge on the topic of ventricular tachycardia and electrical storm from esteemed faculty expert, Dr. Janice Chyou. Audio editing by CardioNerds Academy Intern, Dr. Maryam Barkhordarian. Electrical storm (ES) is a life-threatening arrhythmia syndrome. It is characterized by frequently occurring bouts of unstable cardiac arrythmias. It typically occurs in patients with susceptible substrate, either myocardial scar or a genetic predisposition. The adrenergic input of the sympathetic nervous system can perpetuate arrythmia. In the acute setting, identifying reversible triggers, such as ischemia, electrolyte imbalances, and heart failure, is important. Treatment is complex and varies based on previous treatments received and the presence of intra-cardiac devices. Many options are available to treat ES, including medications, intubation and sedation, procedures and surgeries targeting the autonomic nervous system, and catheter ablation to modulate the myocardial substrate. A multidisciplinary team of cardiologists, intensivists, electrophysiologists, surgeons, and more are necessary to manage this complex disease. The CardioNerds Cardiac Critical Care Series is a multi-institutional collaboration made possible by contributions of stellar fellow leads and expert faculty from several programs, led by series co-chairs, Dr. Mark Belkin, Dr. Eunice Dugan, Dr. Karan Desai, and Dr. Yoav Karpenshif. Pearls • Notes • References • Production Team CardioNerds Cardiac Critical Care PageCardioNerds Episode PageCardioNerds AcademyCardionerds Healy Honor Roll CardioNerds Journal ClubSubscribe to The Heartbeat Newsletter!Check out CardioNerds SWAG!Become a CardioNerds Patron! Pearls and Quotes - Management of Ventricular Tachycardia and Electrical Storm Electrical storm is defined as 3 or more episodes of VF, sustained VT, or appropriate ICD shocks within 24 hours. It occurs more commonly in ischemic compared to non-ischemic cardiomyopathy, and it is associated with a poor prognosis and high cardiovascular mortality. The classic triad of electrical storm is a trigger, a myocardial susceptible substrate, and autonomic input perpetuating the storm. Triggers for electrical storm include ischemia, heart failure, electrolyte abnormalities, hypoxia, drug-related arrhythmogenicity, and thyrotoxicosis. A thorough evaluation of possible triggers is necessary for each patient, but it is uncommonly found. The evaluation may include laboratory studies, genetic testing, advanced imaging, or invasive testing. Acute treatment options involve acute resuscitation, pharmacotherapy with antiarrhythmics and beta-blockers, device interrogation and possible reprogramming, and sedation. Subacute treatment involves autonomic modulation and catheter ablation. Surgical treatments include sympathectomies and, ultimately, heart transplant. Catheter ablation is safe and effective for the treatment of electrical storm. In select patients, hemodynamic peri-procedural hemodynamic support should be considered. Show notes - Management of Ventricular Tachycardia and Electrical Storm Simple diagram of the classic “triad” of ES (see reference 10). Treatment algorithm provided by the 2017 AHA/ACC/HRS guidelines (see reference 1). 1. Define electrical storm. Electrical storm (ES), also called “arrhythmic storm” or “VT storm” refers to a state of cardiac instability associated with 3 or more episodes of VF, sustained VT, or appropriate ICD shocks within 24 hours. Sustained VT refers to 30 seconds of VT or hemodynamically unstable VT requiring termination in < 30 seconds. Incessant VT refers to continued, sustained hemodynamically stable VT that lasts longer than one hour. VT is incessant or recurrent when it recurs promptly despi...

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app