Confluent Developer ft. Tim Berglund, Adi Polak & Viktor Gamov

Confluent
undefined
May 17, 2022 • 7min

Apache Kafka 3.2 - New Features & Improvements

Apache Kafka® 3.2 delivers new  KIPs in three different areas of the Kafka ecosystem: Kafka Core, Kafka Streams, and Kafka Connect. On behalf of the Kafka community, Danica Fine (Senior Developer Advocate, Confluent), shares release highlights.More than half of the KIPs in the new release concern Kafka Core. KIP-704 addresses unclean leader elections by allowing for further communication between the controller and the brokers. KIP-764 takes on the problem of a large number of client connections in a short period of time during preferred leader election by adding the configuration `socket.listen.backlog.size`. KIP-784 adds an error code field to the response of the `DescribeLogDirs` API, and KIP-788 improves network traffic by allowing you to set the pool size of network threads individually per listener on Kafka brokers. Finally, in accordance with the imminent KRaft protocol, KIP-801 introduces a built-in `StandardAuthorizer` that doesn't depend on ZooKeeper. There are five KIPs related to Kafka Streams in the AK 3.2 release. KIP-708 brings rack-aware standby assignment by tag, which improves fault tolerance. Then there are three projects related to Interactive Queries v2: KIP-796 specifies an improved interface for Interactive Queries; KIP-805 allows state to be queried over a specific range; and KIP-806 adds two implementations of the Query interface, `WindowKeyQuery` and `WindowRangeQuery`.The final Kafka Streams project, KIP-791, enhances `StateStoreContext` with `recordMetadata`,which may be accessed from state stores.Additionally, this Kafka release introduces Kafka Connect-related improvements, including KIP-769, which extends the `/connect-plugins` API, letting you list all available plugins, and not just connectors as before.  KIP-779 lets `SourceTasks` handle producer exceptions according to `error.tolerance`, rather than instantly killing the entire connector by default. Finally, KIP-808 lets you specify precisions with respect to TimestampConverter single message transforms. Tune in to learn more about the Apache Kafka 3.2 release!EPISODE LINKSApache Kafka 3.2 release notes Read the blog to learn moreDownload Apache Kafka 3.2.0Watch the video version of this podcastSEASON 2 Hosted by Tim Berglund, Adi Polak and Viktor Gamov Produced and Edited by Noelle Gallagher, Peter Furia and Nurie Mohamed Music by Coastal Kites Artwork by Phil Vo 🎧 Subscribe to Confluent Developer wherever you listen to podcasts. ▶️ Subscribe on YouTube, and hit the 🔔 to catch new episodes. 👍 If you enjoyed this, please leave us a rating. 🎧 Confluent also has a podcast for tech leaders: "Life Is But A Stream" hosted by our friend, Joseph Morais.
undefined
May 11, 2022 • 49min

Scaling Apache Kafka Clusters on Confluent Cloud ft. Ajit Yagaty and Aashish Kohli

How much can Apache Kafka® scale horizontally, and how can you automatically balance, or rebalance data to ensure optimal performance?You may require the flexibility to scale or shrink your Kafka clusters based on demand. With experience engineering cluster elasticity and capacity management features for cloud-native Kafka, Ajit Yagaty (Confluent Cloud Control Plane Engineering) and Aashish Kohli (Confluent Cloud Product Management) join Kris Jenkins in this episode to explain how the architecture of Confluent Cloud supports elasticity. Kris suggests that optimal elasticity is like water from a faucet—you should be able to quickly obtain as many resources as you need, but at the same time you don't want the slightest amount to go wasted. But how do you specify the amount of capacity by which to adjust, and how do you know when it's necessary?Aashish begins by explaining how elasticity on Confluent Cloud has come a long way since the early days of scaling via support tickets. It's now self-serve and can be accomplished by dialing up or down a desired number of CKUs, or Confluent Units of Kafka. A CKU corresponds to a specific amount of Kafka resources and has been made to be consistent across all three major clouds. You can specify the number of CKUs you need via API, CLI or Confluent Cloud UI. Ajit explains in detail how, once your request has been made, cluster resizing is a two-step process. First, capacity is added, and then your data is rebalanced. Rebalancing data on the cluster is critical to ensuring that optimal performance is derived from the available capacity. The amount of time it takes to resize a Kafka cluster depends on the number of CKUs being added or removed, as well as the amount of data to be rebalanced. Of course, to request more or fewer CKUs in the first place, you have to know when it's necessary for your Kafka cluster(s). This can be challenging as clusters emit a large variety of metrics. Fortunately, there is a single composite metric that you can monitor to help you decide, as Ajit imparts on the episode.  Other topics covered by the trio include an in-depth explanation of how Confluent Cloud achieves elasticity under the hood (separate control and data planes, along with some Kafka dogfooding), future plans for autoscaling elasticity, scenarios where elasticity is critical, and much more.EPISODE LINKSHow to Elastically Scale Apache Kafka Clusters on Confluent CloudShrink a Dedicated Kafka Cluster in Confluent CloudElastic Apache Kafka Clusters in Confluent CloudWatch the video version of this podcastKris Jenkins’ TwitterSEASON 2 Hosted by Tim Berglund, Adi Polak and Viktor Gamov Produced and Edited by Noelle Gallagher, Peter Furia and Nurie Mohamed Music by Coastal Kites Artwork by Phil Vo 🎧 Subscribe to Confluent Developer wherever you listen to podcasts. ▶️ Subscribe on YouTube, and hit the 🔔 to catch new episodes. 👍 If you enjoyed this, please leave us a rating. 🎧 Confluent also has a podcast for tech leaders: "Life Is But A Stream" hosted by our friend, Joseph Morais.
undefined
May 5, 2022 • 35min

Streaming Analytics on 50M Events Per Day with Confluent Cloud at Picnic

What are useful practices for migrating a system to Apache Kafka® and Confluent Cloud, and why use Confluent to modernize your architecture?Dima Kalashnikov (Technical Lead, Picnic Technologies) is part of a small analytics platform team at Picnic, an online-only, European grocery store that processes around 45 million customer events and five million internal events daily. An underlying goal at Picnic is to try and make decisions as data-driven as possible, so Dima's team collects events on all aspects of the company—from new stock arriving at the warehouse, to customer behavior on their websites, to statistics related to delivery trucks. Data is sent to internal systems and to a data warehouse.Picnic recently migrated from their existing solution to Confluent Cloud for several reasons:Ecosystem and community: Picnic liked the tooling present in the Kafka ecosystem. Since being a small team means they aren't able to devote extra time to building boilerplate-type code such as connectors for their data sources or functionality for extensive monitoring capabilities. Picnic also has analysts that use SQL so appreciated the processing capabilities of ksqlDB. Finally, they found that help isn't hard to locate if one gets stuck.Monitoring: They wanted better monitoring; specifically they found it challenging to measure for SLAs with their former system as they couldn't easily detect the positions of consumers in their streams.Scaling and data retention times: Picnic is growing so they needed to scale horizontally without having to worry about manual reassignment. They also hit a wall with their previous streaming solution with respect to the length of time they could save data, which is a serious issue for a company that makes data-first decisions. Cloud: Another factor of being a small team is that they don't have resources for extensive maintenance of their tooling.Dima's team was extremely careful and took their time with the migration. They ran a pilot system simultaneously with the old system, in order to make sure it could achieve their fundamental performance goals: complete stability, zero data loss, and no performance degradation. They also wanted to check it for costs.The pilot was successful and they actually have a second, IoT pilot in the works that uses Confluent Cloud and Debezium to track the robotics data emanating from their automatic fulfillment center. And it's a lot of data, Dima mentions that the robots in the center generate data sets as large as their customer events streams. EPISODE LINKSPicnic Analytics Platform: Migration from AWS Kinesis to Confluent CloudPicnic Modernizes Data Architecture with ConfluentData Engineer: Event Streaming PlatformWatch this podcast in videoKris Jenkins’ TwitterSEASON 2 Hosted by Tim Berglund, Adi Polak and Viktor Gamov Produced and Edited by Noelle Gallagher, Peter Furia and Nurie Mohamed Music by Coastal Kites Artwork by Phil Vo 🎧 Subscribe to Confluent Developer wherever you listen to podcasts. ▶️ Subscribe on YouTube, and hit the 🔔 to catch new episodes. 👍 If you enjoyed this, please leave us a rating. 🎧 Confluent also has a podcast for tech leaders: "Life Is But A Stream" hosted by our friend, Joseph Morais.
undefined
May 3, 2022 • 2min

Build a Data Streaming App with Apache Kafka and JS - Coding in Motion

Coding is inherently enjoyable and experimental. With the goal of bringing fun into programming, Kris Jenkins (Senior Developer Advocate, Confluent) hosts a new series of hands-on workshops—Coding in Motion, to teach you how to use Apache Kafka® and data streaming technologies for real-life use cases. In the first episode, Sound & Vision, Kris walks you through the end-to-end process of building a real-time, full-stack data streaming application from scratch using Kafka and JavaScript/TypeScript. During the workshop, you’ll learn to stream musical MIDI data into fully-managed Kafka using Confluent Cloud, then process and transform the raw data stream using ksqlDB. Finally, the enriched data streams will be pushed to a web server to display data in a 3D graphical visualization. Listen to Kris previews the first episode of Coding in Motion: Sound & Vision and join him in the workshop premiere to learn more. EPISODE LINKSCoding in Motion Workshop: Build a Streaming App for Sound & VisionWatch the video version of this podcastKris Jenkins’ TwitterStreaming Audio Playlist Join the Confluent CommunityLearn more with Kafka tutorials, resources, and guides at Confluent DeveloperLive demo: Intro to Event-Driven Microservices with ConfluentUse PODCAST100 to get an additional $100 of free Confluent Cloud usage (details)   SEASON 2 Hosted by Tim Berglund, Adi Polak and Viktor Gamov Produced and Edited by Noelle Gallagher, Peter Furia and Nurie Mohamed Music by Coastal Kites Artwork by Phil Vo 🎧 Subscribe to Confluent Developer wherever you listen to podcasts. ▶️ Subscribe on YouTube, and hit the 🔔 to catch new episodes. 👍 If you enjoyed this, please leave us a rating. 🎧 Confluent also has a podcast for tech leaders: "Life Is But A Stream" hosted by our friend, Joseph Morais.
undefined
Apr 28, 2022 • 49min

Optimizing Apache Kafka's Internals with Its Co-Creator Jun Rao

You already know Apache Kafka® is a distributed event streaming system for setting your data in motion, but how does its internal architecture work? No one can explain Kafka’s internal architecture better than Jun Rao, one of its original creators and Co-Founder of Confluent. Jun has an in-depth understanding of Kafka that few others can claim—and he shares that with us in this episode, and in his new Kafka Internals course on Confluent Developer. One of Jun's goals in publishing the Kafka Internals course was to cover the evolution of Kafka since its initial launch. In line with that goal, he discusses the history of Kafka development, including the original thinking behind some of its design decisions, as well as how its features have been improved to better meet its key goals of durability, scalability, and real-time data. With respect to its initial design, Jun relates how Kafka was conceived from the ground up as a distributed system, with compute and storage always maintained as separate entities, so that they could scale independently. Additionally, he shares that Kafka was deliberately made for high throughput since many of the popular messaging systems at the time of its invention were single node, but his team needed to process large volumes of non-transactional data, such as application metrics, various logs, click streams, and IoT information.As regards the evolution of its features, in addition to others, Jun explains these two topics at great length:Consumer rebalancing protocol: The original "stop the world" approach to Kafka's consumer rebalancing—although revolutionary at the time of its launch, was eventually improved upon to take a more incremental approach.Cluster metadata: Moving from the external ZooKeeper to the built-in KRaft protocol allows for better scaling by a factor of ten. according to Jun, and it also means you only need to worry about running a single binary.The Kafka Internals course consists of eleven concise modules, each dense with detail—covering Kafka fundamentals in technical depth. The course also pairs with four hands-on exercise modules led by Senior Developer Advocate Danica Fine. EPISODE LINKSKafka Internals courseHow Apache Kafka Works: An Introduction to Kafka’s InternalsCoding in Motion Workshop: Build a Streaming AppWatch the video version of this podcastKris Jenkins’ TwitterStreaming Audio Playlist Join the Confluent CommunityLearn more with Kafka tutorialSEASON 2 Hosted by Tim Berglund, Adi Polak and Viktor Gamov Produced and Edited by Noelle Gallagher, Peter Furia and Nurie Mohamed Music by Coastal Kites Artwork by Phil Vo 🎧 Subscribe to Confluent Developer wherever you listen to podcasts. ▶️ Subscribe on YouTube, and hit the 🔔 to catch new episodes. 👍 If you enjoyed this, please leave us a rating. 🎧 Confluent also has a podcast for tech leaders: "Life Is But A Stream" hosted by our friend, Joseph Morais.
undefined
Apr 21, 2022 • 51min

Using Event-Driven Design with Apache Kafka Streaming Applications ft. Bobby Calderwood

What is event modeling and how does it differ from standard data modeling?In this episode of Streaming Audio, Bobby Calderwood, founder of Evident Systems and creator of oNote observes that at the dawn of the computer age, due to the fact that memory and computing power were expensive, people began to move away from time-and-narrative-oriented record-keeping systems (in the manner of a ship's log or a financial ledger) to systems based on aggregation. Such data-model systems, still dominant today, only retain the current state generated from their inputs, with the inputs themselves going lost. A converse approach to the reductive data-model system is the event-model system, which is enabled by tools like Apache Kafka®, and which effectively saves every bit of activity that the system generates. The event model actually marks a return, in a sense, to the earlier, narrative-like recording methods.To further illustrate, Bobby uses a chess example to show the distinction between the data model and the event model. In a chess context, the event modeling system would retain each move in the game from beginning to end, such that any moment in the game could be derived by replaying the sequence of moves. Conversely, chess based on the data model would save only the current state of the game, destructively mutating the data structure to reflect it. The event model maintains an immutable log of all of a system's activity, which means that teams downstream from the transactions team have access to all of the system's data, not just the end transactions, and they can analyze the data as they wish in order to make their own conclusions. Thus there can be several read models over the same body of events. Bobby has found that non-programming stakeholding teams tend to intuitively comprehend the event model better than other data paradigms, given its natural narrative form.    Transitioning from the data model to the event model, however, can be challenging. Bobby’s oNote—event modeling platform aims to help by providing a digital canvas that allows a system to be visually redesigned according to the event model. oNote generates Avro schema based on its models, and also uses Avro to generate runtime code.EPISODE LINKSEvent Sourcing and Event Storage with Apache KafkaoNoteEvent ModelingToward a Functional Programming Analogy for MicroservicesEvent-Driven Architecture - Common Mistakes and Valuable Lessons ft. Simon AuburyWatch the video version of this podcastCoding in Motion Workshop: Build a StreamSEASON 2 Hosted by Tim Berglund, Adi Polak and Viktor Gamov Produced and Edited by Noelle Gallagher, Peter Furia and Nurie Mohamed Music by Coastal Kites Artwork by Phil Vo 🎧 Subscribe to Confluent Developer wherever you listen to podcasts. ▶️ Subscribe on YouTube, and hit the 🔔 to catch new episodes. 👍 If you enjoyed this, please leave us a rating. 🎧 Confluent also has a podcast for tech leaders: "Life Is But A Stream" hosted by our friend, Joseph Morais.
undefined
Apr 13, 2022 • 38min

Monitoring Extreme-Scale Apache Kafka Using eBPF at New Relic

New Relic runs one of the larger Apache Kafka® installations in the world, ingesting circa 125 petabytes a month, or approximately three billion data points per minute. Anton Rodriguez is the architect of the system, responsible for hundreds of clusters and thousands of clients, some of them implemented in non-standard technologies. In addition to the large volume of servers, he works with many teams, which must all work together when issues arise.Monitoring New Relic's large Kafka installation is critical and of course challenging, even for a company that itself specializes in monitoring. Specific obstacles include determining when rebalances are happening, identifying particularly old consumers, measuring consumer lag, and finding a way to observe all producing and consuming applications.One way that New Relic has improved the monitoring of its architecture is by directly consuming metrics from the Linux kernel using its new eBPF technology, which lets programs run inside the kernel without changing source code or adding additional modules (the open-source tool Pixie enables access to eBPF in a Kafka context). eBPF is very low impact, so doesn’t affect services, and it allows New Relic to see what’s happening at the network level—and to take action as necessary.EPISODE LINKSMonitoring Kafka Without Instrumentation Using eBPFWhat Is eBPF and Why Does It Matter for Observability?Kafka MonitoringKafka Summit: Monitoring Kafka Without Instrumentation Using eBPFWatch the video version of this podcastKris Jenkins’ TwitterStreaming Audio Playlist Join the Confluent CommunityLearn more with Kafka tutorials, resources, and guides at Confluent DeveloperLive demo: Intro to Event-Driven Microservices with ConfluentUse PODCAST100 to get an additional $100 of free Confluent Cloud usage (details)   SEASON 2 Hosted by Tim Berglund, Adi Polak and Viktor Gamov Produced and Edited by Noelle Gallagher, Peter Furia and Nurie Mohamed Music by Coastal Kites Artwork by Phil Vo 🎧 Subscribe to Confluent Developer wherever you listen to podcasts. ▶️ Subscribe on YouTube, and hit the 🔔 to catch new episodes. 👍 If you enjoyed this, please leave us a rating. 🎧 Confluent also has a podcast for tech leaders: "Life Is But A Stream" hosted by our friend, Joseph Morais.
undefined
Apr 12, 2022 • 10min

Confluent Platform 7.1: New Features + Updates

Confluent Platform 7.1 expands upon its already innovative features, adding improvements in key areas that benefit data consistency, allow for increased speed and scale, and enhance resilience and reliability.Previously, the Confluent Platform 7.0 release introduced Cluster Linking, which enables you to bridge on-premises and cloud clusters, among other configurations. Maintaining data quality standards across multiple environments can be challenging though. To assist with this problem, CP 7.1 adds Schema Linking, which lets you share consistent schemas across your clusters—synced in real time.Confluent for Kubernetes lets you build your own private-cloud Apache Kafka® service. Now you can enhance the global resilience of your architecture by employing to multiple regions. With the new release you can also configure custom volumes attached to Confluent deployments and you can declaratively define and manage the new Schema Links. As of this release, Confluent for Kubernetes now supports the full feature set of the Confluent Platform. Tiered Storage was released in Confluent Platform 6.0, and it offers immense benefits for a cluster by allowing the offloading of older topic data out of the broker and into slower, long-term object storage. The reduced amount of local data makes maintenance, scaling out, recovery from failure, and adding brokers all much quicker. CP 7.1 adds compatibility for object storage using Nutanix, NetApp, MinIO, and Dell, integrations that have been put through rigorous performance and quality testing.Health+ was introduced in CP 6.2—offers intelligent cloud-based alerting and monitoring tools in a dashboard. New as of CP 7.1, you can choose to be alerted when anomalies in broker latency are detected, when there is an issue with your connectors linking Kafka and external systems, as well as when a ksqlDB query will interfere with a continuous, real-time processing stream. Shipping with CP 7.1 is ksqlDB 0.23, which adds support for pull queries against streams as opposed to only against tables—a milestone development that greatly helps when debugging since a subset of messages within a topic can now be inspected. ksqlDB 0.23 also supports custom schema selection, which lets you choose a specific schema ID when you create a new stream or table, rather than use the latest registered schema. A number of additional smaller enhancements are also included in the release.EPISODE LINKSDownload Confluent Platform 7.1Check out the release notesRead the Confluent Platform 7.1 blog postWatch the video version of this podcastJoin the Confluent CommunityLearn more with Kafka tutorials, resoSEASON 2 Hosted by Tim Berglund, Adi Polak and Viktor Gamov Produced and Edited by Noelle Gallagher, Peter Furia and Nurie Mohamed Music by Coastal Kites Artwork by Phil Vo 🎧 Subscribe to Confluent Developer wherever you listen to podcasts. ▶️ Subscribe on YouTube, and hit the 🔔 to catch new episodes. 👍 If you enjoyed this, please leave us a rating. 🎧 Confluent also has a podcast for tech leaders: "Life Is But A Stream" hosted by our friend, Joseph Morais.
undefined
Apr 7, 2022 • 1h 11min

Scaling an Apache Kafka Based Architecture at Therapie Clinic

Scaling Apache Kafka® can be tricky, let alone scaling a team. When he was first hired, Domenico Fioravanti of Therapie Clinic was given the challenging task of assembling a sizable tech team from scratch, while simultaneously building a scalable and decoupled architecture from the ground up. In addition, he wanted to deliver value to the company from day one. One way that Domenico ultimately accomplished these goals was by focusing on managed solutions in order to avoid large investments in engineering know-how. Another way was to deliver quickly to production by using the existing knowledge of his team.Domenico's biggest initial priority was to make a real-time reporting dashboard that collated data generated by third-party systems, such as call centers and front-of-house software solutions that managed bookings and transactions. (Before Domenico's arrival, all reporting had been done by aggregating data from different sources through an expensive, manual, error-prone, and slow process—which tended to result in late and incomplete insights.)Establishing an initial stack with AWS and a BI/analytics tool only took a month and required minimal DevOps resources, but Domenico's team ended up wanting to leverage their efforts to free up third-party data for more than just the reporting/data insights use case.So they began considering Apache Kafka® as a central repository for their data. For Kafka itself, they investigated Amazon MSK vs. Confluent, carefully weighing setup and time costs, maintenance costs, limitations, security, availability, risks, migration costs, Kafka updates frequency, observability, and errors and troubleshooting needs.Domenico's team settled on Confluent Cloud and built the following stack:AWS AppSync, a managed GraphQL layer to interact with and abstract third-party APIs (data sources)AWS Lambdas for extracting data and producing to Kafka topicsKafka topics for the raw as well as transformed dataKafka Streams for data transformationKafka Redshift sink connector for loading data​​AWS Redshift as the destination cloud data warehouse Looker for business intelligence and big data analytics This stack allowed the company's data to be consumed by multiple teams in a scalable way. Eventually, DynamoDB was added and by the end of a year, along with a scalable architecture, Domenico had successfully grown his staff to 45 members on six teams.EPISODE LINKSConfluent’s Data Streaming Platform Can Save Over $2.5M vs. Self-Managing Apache KafkaAccelerate Your Cloud Data Warehouse Migration and Modernization with ConfluentWatch the video version of this podcastKris Jenkins' TwitterSSEASON 2 Hosted by Tim Berglund, Adi Polak and Viktor Gamov Produced and Edited by Noelle Gallagher, Peter Furia and Nurie Mohamed Music by Coastal Kites Artwork by Phil Vo 🎧 Subscribe to Confluent Developer wherever you listen to podcasts. ▶️ Subscribe on YouTube, and hit the 🔔 to catch new episodes. 👍 If you enjoyed this, please leave us a rating. 🎧 Confluent also has a podcast for tech leaders: "Life Is But A Stream" hosted by our friend, Joseph Morais.
undefined
Mar 29, 2022 • 23min

Bridging Frontend and Backend with GraphQL and Apache Kafka ft. Gerard Klijs

What is GraphQL? And how can you combine GraphQL with Apache Kafka® to query data in real time?With over 10 years of experience as a backend engineer, Gerard Klijs is a Confluent Community Catalyst, a contributor to several GraphQL libraries, and also a creator and maintainer of a Rust library to use Confluent Schema Registry with Java client. In this episode, he explains why you want to use Kafka with GraphQL and how they work together to bridge the gap between backend and frontend to make data more easily accessible in the frontend.  As an alternative to REST, GraphQL is an open source programming language developed by Meta, which lets you pull data from multiple data sources via a single API call. GraphQL lets you migrate and deprecate data easily. For example, if you have a `name` field, which you later decided to replace by `firstName` and `lastName`, you can group the field names together and monitor the server for query requests. If there are no additional query requests for the deprecated field, then it can be removed from the server.Usually, GraphQL is used in the frontend with a server implemented in Node.js, while Kafka is often used as an integration layer between backend components. When it comes to connecting Kafka with GraphQL, the use cases might not seem as vast at first glance, but Gerard thinks that it is due to unfamiliarity and misconceptions on how the two can work together. For example, some may think Kafka is merely a message bus and GraphQL is for graph databases.Gerard also talks about the backend for frontend (BFF) pattern as well as tips on working with GraphQL. EPISODE LINKSGetting Started with GraphQL and Apache KafkaKafka and GraphQL: Misconceptions and ConnectionsGerard Klijs GithubWatch the video version of this podcastKris Jenkins TwitterStreaming Audio Playlist Join the Confluent CommunityLearn more with Kafka tutorials, resources, and guides at Confluent DeveloperLive demo: Intro to Event-Driven Microservices with ConfluentUse PODCAST100 to get an additional $100 of free Confluent Cloud usage (details)  SEASON 2 Hosted by Tim Berglund, Adi Polak and Viktor Gamov Produced and Edited by Noelle Gallagher, Peter Furia and Nurie Mohamed Music by Coastal Kites Artwork by Phil Vo 🎧 Subscribe to Confluent Developer wherever you listen to podcasts. ▶️ Subscribe on YouTube, and hit the 🔔 to catch new episodes. 👍 If you enjoyed this, please leave us a rating. 🎧 Confluent also has a podcast for tech leaders: "Life Is But A Stream" hosted by our friend, Joseph Morais.

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app