

Papers Read on AI
Rob
Keeping you up to date with the latest trends and best performing architectures in this fast evolving field in computer science.
Selecting papers by comparative results, citations and influence we educate you on the latest research.
Consider supporting us on Patreon.com/PapersRead for feedback and ideas.
Selecting papers by comparative results, citations and influence we educate you on the latest research.
Consider supporting us on Patreon.com/PapersRead for feedback and ideas.
Episodes
Mentioned books

May 29, 2024 • 1h 14min
Retrieval-Augmented Generation for AI-Generated Content: A Survey
The podcast explores how Retrieval-Augmented Generation (RAG) addresses challenges in AI-generated content by integrating retrievers with generators. It discusses advanced generative models like GANs, dense passage retrieval methods, and innovative approaches in AI-generated content, showcasing applications in video tasks, audio generation, and more. The podcast also explores implications and future directions for RAG.

May 28, 2024 • 27min
MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning
Low-rank adaptation is a popular parameter-efficient fine-tuning method for large language models. In this paper, we analyze the impact of low-rank updating, as implemented in LoRA. Our findings suggest that the low-rank updating mechanism may limit the ability of LLMs to effectively learn and memorize new knowledge. Inspired by this observation, we propose a new method called MoRA, which employs a square matrix to achieve high-rank updating while maintaining the same number of trainable parameters. To achieve it, we introduce the corresponding non-parameter operators to reduce the input dimension and increase the output dimension for the square matrix. Furthermore, these operators ensure that the weight can be merged back into LLMs, which makes our method can be deployed like LoRA. We perform a comprehensive evaluation of our method across five tasks: instruction tuning, mathematical reasoning, continual pretraining, memory and pretraining. Our method outperforms LoRA on memory-intensive tasks and achieves comparable performance on other tasks.
2024: Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng, Feng Sun, Qi Zhang, Deqing Wang, Fuzhen Zhuang
https://arxiv.org/pdf/2405.12130

May 27, 2024 • 55min
LightAutoML: AutoML Solution for a Large Financial Services Ecosystem
We present an AutoML system called LightAutoML developed for a large European financial services company and its ecosystem satisfying the set of idiosyncratic requirements that this ecosystem has for AutoML solutions. Our framework was piloted and deployed in numerous applications and performed at the level of the experienced data scientists while building high-quality ML models significantly faster than these data scientists. We also compare the performance of our system with various general-purpose open source AutoML solutions and show that it performs better for most of the ecosystem and OpenML problems. We also present the lessons that we learned while developing the AutoML system and moving it into production.
2021: Anton Vakhrushev, A. Ryzhkov, M. Savchenko, Dmitry Simakov, Rinchin Damdinov, Alexander Tuzhilin
https://arxiv.org/pdf/2109.01528

May 24, 2024 • 1h 13min
Efficient Multimodal Large Language Models: A Survey
In the past year, Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in tasks such as visual question answering, visual understanding and reasoning. However, the extensive model size and high training and inference costs have hindered the widespread application of MLLMs in academia and industry. Thus, studying efficient and lightweight MLLMs has enormous potential, especially in edge computing scenarios. In this survey, we provide a comprehensive and systematic review of the current state of efficient MLLMs. Specifically, we summarize the timeline of representative efficient MLLMs, research state of efficient structures and strategies, and the applications. Finally, we discuss the limitations of current efficient MLLM research and promising future directions. Please refer to our GitHub repository for more details: https://github.com/lijiannuist/Efficient-Multimodal-LLMs-Survey.
2024: Yizhang Jin, Jian Li, Yexin Liu, Tianjun Gu, Kai Wu, Zhengkai Jiang, Muyang He, Bo Zhao, Xin Tan, Zhenye Gan, Yabiao Wang, Chengjie Wang, Lizhuang Ma
https://arxiv.org/pdf/2405.10739

May 23, 2024 • 45min
The Platonic Representation Hypothesis
We argue that representations in AI models, particularly deep networks, are converging. First, we survey many examples of convergence in the literature: over time and across multiple domains, the ways by which different neural networks represent data are becoming more aligned. Next, we demonstrate convergence across data modalities: as vision models and language models get larger, they measure distance between datapoints in a more and more alike way. We hypothesize that this convergence is driving toward a shared statistical model of reality, akin to Plato's concept of an ideal reality. We term such a representation the platonic representation and discuss several possible selective pressures toward it. Finally, we discuss the implications of these trends, their limitations, and counterexamples to our analysis.
2024: Minyoung Huh, Brian Cheung, Tongzhou Wang, Phillip Isola
https://arxiv.org/pdf/2405.07987

May 22, 2024 • 33min
RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment
Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data. Such biases can produce suboptimal samples, skewed outcomes, and unfairness, with potentially serious consequences. Consequently, aligning these models with human ethics and preferences is an essential step toward ensuring their responsible and effective deployment in real-world applications. Prior research has primarily employed Reinforcement Learning from Human Feedback (RLHF) to address this problem, where generative models are fine-tuned with RL algorithms guided by a human-feedback-informed reward model. However, the inefficiencies and instabilities associated with RL algorithms frequently present substantial obstacles to the successful alignment, necessitating the development of a more robust and streamlined approach. To this end, we introduce a new framework, Reward rAnked FineTuning (RAFT), designed to align generative models effectively. Utilizing a reward model and a sufficient number of samples, our approach selects the high-quality samples, discarding those that exhibit undesired behavior, and subsequently enhancing the model by fine-tuning on these filtered samples. Our studies show that RAFT can effectively improve the model performance in both reward learning and other automated metrics in both large language models and diffusion models.
2023: Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, Shizhe Diao, Jipeng Zhang, Kashun Shum, T. Zhang
https://arxiv.org/pdf/2304.06767

May 21, 2024 • 52min
LLMs as Hackers: Autonomous Linux Privilege Escalation Attacks
Penetration testing, an essential component of software security testing, allows organizations to proactively identify and remediate vulnerabilities in their systems, thus bolstering their defense mechanisms against potential cyberattacks. One recent advancement in the realm of penetration testing is the utilization of Language Models (LLMs). We explore the intersection of LLMs and penetration testing to gain insight into their capabilities and challenges in the context of privilege escalation. We create an automated Linux privilege-escalation benchmark utilizing local virtual machines. We introduce an LLM-guided privilege-escalation tool designed for evaluating different LLMs and prompt strategies against our benchmark. Our results show that GPT-4 is well suited for detecting file-based exploits as it can typically solve 75-100\% of test-cases of that vulnerability class. GPT-3.5-turbo was only able to solve 25-50% of those, while local models, such as Llama2 were not able to detect any exploits. We analyze the impact of different prompt designs, the benefits of in-context learning, and the advantages of offering high-level guidance to LLMs. We discuss challenging areas for LLMs, including maintaining focus during testing, coping with errors, and finally comparing them with both stochastic parrots as well as with human hackers.
2023: A. Happe, Aaron Kaplan, Jürgen Cito
https://arxiv.org/pdf/2310.11409

May 16, 2024 • 37min
CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on.
2024: Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever

May 14, 2024 • 20min
A decoder-only foundation model for time-series forecasting
Motivated by recent advances in large language models for Natural Language Processing (NLP), we design a time-series foundation model for forecasting whose out-of-the-box zero-shot performance on a variety of public datasets comes close to the accuracy of state-of-the-art supervised forecasting models for each individual dataset. Our model is based on pretraining a patched-decoder style attention model on a large time-series corpus, and can work well across different forecasting history lengths, prediction lengths and temporal granularities.
2023: Abhimanyu Das, Weihao Kong, Rajat Sen, Yichen Zhou
https://arxiv.org/pdf/2310.10688

May 13, 2024 • 31min
Autonomous LLM-driven research from data to human-verifiable research papers
As AI promises to accelerate scientific discovery, it remains unclear whether fully AI-driven research is possible and whether it can adhere to key scientific values, such as transparency, traceability and verifiability. Mimicking human scientific practices, we built data-to-paper, an automation platform that guides interacting LLM agents through a complete stepwise research process, while programmatically back-tracing information flow and allowing human oversight and interactions. In autopilot mode, provided with annotated data alone, data-to-paper raised hypotheses, designed research plans, wrote and debugged analysis codes, generated and interpreted results, and created complete and information-traceable research papers. Even though research novelty was relatively limited, the process demonstrated autonomous generation of de novo quantitative insights from data. For simple research goals, a fully-autonomous cycle can create manuscripts which recapitulate peer-reviewed publications without major errors in about 80-90%, yet as goal complexity increases, human co-piloting becomes critical for assuring accuracy. Beyond the process itself, created manuscripts too are inherently verifiable, as information-tracing allows to programmatically chain results, methods and data. Our work thereby demonstrates a potential for AI-driven acceleration of scientific discovery while enhancing, rather than jeopardizing, traceability, transparency and verifiability.
2024: Tal Ifargan, Lukas Hafner, Maor Kern, Ori Alcalay, Roy Kishony
https://arxiv.org/pdf/2404.17605