
The Future of Everything
Host Russ Altman, a professor of bioengineering, genetics, and medicine at Stanford, is your guide to the latest science and engineering breakthroughs. Join Russ and his guests as they explore cutting-edge advances that are shaping the future of everything from AI to health and renewable energy.
Along the way, “The Future of Everything” delves into ethical implications to give listeners a well-rounded understanding of how new technologies and discoveries will impact society. Whether you’re a researcher, a student, or simply curious about what’s on the horizon, tune in to stay up-to-date on the latest developments that are transforming our world.
Latest episodes

Oct 19, 2020 • 28min
Markus Covert: How to build a computer model of a cell
When Stanford bioengineer Markus Covert first decided to create a computer model able to simulate the behavior of a single cell, he was held back by more than an incomplete understanding of how a cell functions, but also by a lack of computer power. His early models would take more than 10 hours to churn through a single simulation and that was when using a supercomputer capable of billions of calculations per second.Nevertheless, in his quest toward what had been deemed "a grand challenge of the 21st century," Covert pressed on and eventually published a paper announcing his success in building a model of just one microbe: E. coli, a popular subject in biological research. The model would allow researchers to run experiments not on living bacteria in a lab, but on a simulated cell on a computer.After all was said and done, however, the greatest takeaway for Covert was that a cell is a very, very complex thing. There were fits and starts and at least one transcendent conceptual leap — which Covert has dubbed “deep curation” — needed to make it all happen, but he found a way. As Covert points out, no model is perfect, but some are useful. And that is how usefulness, not perfection, became the goal of his work, as he tells fellow bioengineer Russ Altman in this episode of Stanford Engineering’s The Future of Everything podcast. Listen here, and subscribe to the podcast here.
Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook

Sep 23, 2020 • 28min
Rafael Pelayo: How to get a good night’s sleep
COVID-19 is changing how many scientists, like Stanford sleep expert Rafael Pelayo, MD, view their field. First off, the shift to telemedicine is providing Pelayo, author of the new book How to Sleep, an unprecedented glimpse into the sleep environments of his patients. “I’m making house calls for the first time,” he says.Second, surprisingly, some of his patients, unburdened of long commutes, say they are sleeping and dreaming more than ever. But, others are not so fortunate, reporting increased trouble sleeping and more nightmares. Pandemic-induced or not, the consequences of lost sleep are universal and readily apparent in the country’s diminished productivity, in the rates of stroke, heart attacks and car accidents, and in the pervasive irritable mood many can’t seem to escape.To get a better night’s sleep, Pelayo says, put the screens away, consider that continuous positive airway pressure (CPAP) machine if you snore (it could save your life, he says), and find a way to create a personal sleep environment even if you share a bed with someone you love.Join us as Rafael Pelayo and our host, Stanford bioengineer, Russ Altman, talk sleep on this episode of Stanford Engineering’s The Future of Everything podcast. Listen here, and subscribe to the podcast here.
Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook

Sep 21, 2020 • 28min
Marietje Schaake: Can democracy survive in a digital world?
Marietje Schaake was a Member of the European Parliament from 2009 to 2019 and now serves as the international policy director at Stanford University’s Cyber Policy Center and international policy fellow at Stanford’s Institute for Human-Centered Artificial Intelligence. As she has watched democracy evolve in the age of instantaneous global communication and hyperconnected social media, she has grown concerned about the resilience of democracy as technology disrupts the status quo. While the technologies—and the often-unregulated companies who created them—claim to be well-meaning, she says democracy is under attack from propagandists and bad actors using these transformative tools in troubling ways. The business models based on surveillance and advertising were never designed with preserving democracy in mind. We now find ourselves at a decisive moment for the future of elective government, she says. America and other democratic nations can expose the meddlers and their techniques or succumb to their approaches. The solutions, she says, begin at the grassroots and with the tech companies. We need real-time and independent monitoring and research to better expose manipulations and to allow for evidence-based policy making. Join Stanford Engineering’s The Future of Everything podcast for an insider’s sobering look at democracy in the digital age. Listen here, and subscribe here to the podcast.
Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook

Sep 18, 2020 • 28min
Andrew Huberman: How stress affects the mind — and how to relieve it
Andrew Huberman is a Stanford neurobiologist and ophthalmologist keenly interested in the biology of stress and ways to manage stress.He’s developed and tested a number of stress-relieving techniques — from specific patterns of breathing to visual tools — and uses virtual reality to help humans control their stress in adaptive ways. He is also testing how people can access better sleep using stress-relief tools. Much of this work is done in collaboration with David Spiegel, MD, associate chair of psychiatry and behavioral sciences at Stanford Medicine.Huberman studies how the nervous system takes in and processes information and uses it to drive reflexive and deliberate behavior. In that regard, humans are largely visual animals. The vast majority of the information we collect about the world comes through the eyes, and those circuits are tied directly to our most primordial “fight or flight” systems. Light, and how our brains process light energy, is closely tied to our stress mechanisms. Our most immediate reaction to stress, he notes, is for our pupils to dilate, which changes how we see the world — literally — in a way that allows us to better respond to threats. Breathing and vision can also be used to control stress.Huberman tells us all about it in this episode of Stanford Engineering’s The Future of Everything podcast, hosted by Stanford bioengineer Russ Altman. Listen and subscribe to the podcast here.
Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook

Aug 26, 2020 • 28min
Manu Prakash: How to beat a pandemic on a budget
Manu Prakash was in France when COVID-19 took hold throughout the world. There, the Stanford bioengineer, famous for “frugal science” like his $1 field microscope made of paper, witnessed the challenges a relatively well-resourced nation experienced holding back the disease. His head was soon filled with visions of the nightmare awaiting developing nations, given that a COVID-19 test in developing countries can cost as much as $400.In a flurry, Prakash jotted down an engineering manifesto of sorts for a worldwide revolution in open-source, inexpensive healthcare solutions. As he saw it, here were three areas of greatest need — diagnostics, protective equipment and critical care.From his lab at Stanford, Prakash, his students and partners in academia, industry and government around the world led a frenzy of invention that yielded an array of transformative products in just months. There was the electricity-free COVID-19 test based on a simple children’s flashlight. There was Pneumask, a full-face, reusable N95 protective equipment for caregivers inspired by the mask Prakash uses in one of his favorite pastimes, snorkeling. And then there was the “N95 factory in a box” Prakash and his lab developed using cotton candy machines to spin N95-quality filtration materials from waste plastics. Finally, to tackle one of the most technical challenges of all, he built a global consortium with manufacturing partners in India, Kenya and Nepal to design an open-source full-feature ICU ventilator, known as Pufferfish (Prakash has a penchant for naming products after marine life) — bringing a low-cost critical care solution to the world.
Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook

Aug 15, 2020 • 28min
Byron Reeves: What our screens tell us about us
With the emergence of touchscreen smartphones, tablets and watches, so much of our lives is spent on our devices that in many ways we are what appears on screen. This “mediatization,” as Byron Reeves, a professor of communication at Stanford University, puts it, sparked a remarkable and unprecedented study of the way we live today.In a series of field studies, Reeves has recorded screen time of his subjects one frame every five seconds for days on end — with promises of absolute privacy, of course. He then uses artificial intelligence to decipher it all — words and images are recorded and analyzed. The portraits that emerge play out like cinema, revealing never-before-imagined insights into how people live in the screen-time world. Reeves says the pervading sense that everyone is multitasking and that attention spans are narrowing is not just a hunch, but demonstrable in the data. Our screens are often filled with radically different content side-by-side and each bit gets consumed in rapid-fire bursts of focus, often no more than 10 to 20 seconds each. Join us for a fascinating look at our screen-time culture on the latest episode of Stanford Engineering’s The Future of Everything podcast. Listen here.
Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook

Aug 12, 2020 • 28min
Newsha Ajami: How engineers restored hope for our water supplies
There was a time when all great cities were built near water. Whether for agriculture, aesthetics, energy or just plain drinking, water was a life-affirming, life-sustaining resource. But with the advent of advanced engineering in the form of dams, pumps and pipes, cities like Los Angeles thrived in places with very little fresh water. Now, global climate change is leaving many of those cities in danger of running dry.But there is hope on the horizon, says Newsha Ajami, senior research engineer at the Woods Institute for the Environment and director of urban water policy with Stanford University’s Water in the West program. Just as engineering made it possible to store and pump fresh water great distances, the field is developing new ways to use less water, to store more of this prized resource, to repurpose used “gray water” for non-potable uses like agriculture, and to inform inventive policy approaches to conserve fresh water.It won’t be easy, she says. California alone has over 7,000 independent water agencies that must be wrangled into a cohesive team to make it real, but recent progress has people believing once again that our parched cities can be saved. It’s all here on this episode of Stanford Engineering’s The Future of Everything podcast. Listen here.
Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook

Aug 3, 2020 • 28min
Susan Holmes: How statistics are reshaping our understanding of biology
In recent years, biologists have learned that the vaginal microbiome — the make-up of the bacteria in the vagina — during pregnancy may be the best predictor of pre-term birth. It is a valuable finding that could reshape obstetrics. What is perhaps more revelatory about this emerging knowledge is that biologists have learned it from a surprising source: statistics.Stanford’s Susan Holmes is one such statistician in the rapidly evolving science of using statistics to understand biology. Holmes is now turning her attention to improving our understanding of the remarkable human immune system to help fight cancer and other deadly diseases. She says that the statistician’s greatest contribution to biology may not necessarily reside in analyzing the myriad numbers and data points available these days, but rather in divining and explaining which patterns are replicable and which are not.Join bioengineering Professor Russ Altman for the latest episode of Stanford Engineering’s The Future of Everything podcast to discuss the fascinating and fast-evolving field of statistical biology with a leading proponent of the science, Susan Holmes. Listen here.
Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook

Jul 18, 2020 • 28min
Sheri Sheppard: How do we educate a new kind of engineer?
Mechanical engineer Sheri Sheppard got her start in engineering working on the Corvette for General Motors and later worked for both Ford and Chrysler.Back then, she was among a handful of women engineers in the auto industry, where she learned firsthand the risks a monolithic culture presents.Today, Sheppard is a professor at Stanford University, where she works to encourage diversity in the student body, in the classroom and in the curriculum. She says that engineering needs to reach beyond the traditional disciplines to tap into sociology, history, ethics, psychology and even philosophy to help engineers explore the “peopleness” in the challenges they are trying to solve.In that pursuit, she encourages women and minorities eager to transform their field to become what her colleague Deb Meyerson has dubbed “tempered radicals” — leaders who can rock the boat while remaining in the boat. The result, Sheppard tells Stanford Engineering’s The Future of Everything podcast, is more empathetic engineering that benefits everyone in society.
Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook

Jul 6, 2020 • 28min
Jonathan Chen: Can algorithms make doctors better?
We’re all familiar with those algorithms on our favorite e-commerce and streaming services that recommend purchases, books or movies based on what “others like you” have enjoyed. In the industry, they are known as “recommender engines.”Medical doctor Jonathan Chen is an assistant professor of medicine at Stanford and an expert in bioinformatics who wondered if the medical profession might benefit from similar artificial intelligence. He now creates recommender engines for doctors that comb real-world clinical data to help them make key decisions based on steps other doctors have taken with similar patients, empowering individuals with the collective experience of the many.Chen tells Stanford Engineering’s The Future of Everything podcast that such programs will soon be commonplace in exam rooms, helping doctors become better at what they already do and making medical practice a more consistent, universal experience for everyone.
Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook