The Future of Everything cover image

The Future of Everything

Latest episodes

undefined
Jul 19, 2021 • 28min

Srabanti Chowdhury: New forms of semiconductors are key to the future

Electronics are everywhere these days, so much so that often we don't even register that we are using them. The use of electronics will only grow over time as engineers solve societal challenges through increased connectivity, faster computation, new high-tech gadgets, and energy sustainability. Against that backdrop, electrical engineers like Stanford’s Srabanti Chowdhury have been searching for new semiconductors that can expand the application space beyond the ubiquitous silicon. Among the options she’s exploring is an old familiar friend—diamond—and a few new ones, too, like gallium nitride.The diamonds Chowdhury works with are a far cry from the sparkly gems a jeweler might prize. These diamonds are “doped” with other elements to achieve optimal electrical performance. Meanwhile, gallium nitride has shown promise in LEDs and lasers, as well as in cutting-edge radar systems—among other applications.While these new semiconductors have raised hopes of scaling new heights where even silicon cannot reach, much work remains if they are ever to move from lab bench to laptops and myriad other electronic devices. The payoff, however, will be smaller, faster, more powerful, more energy efficient, and more versatile electronics, as Chowdhury tells listeners to this episode of Stanford Engineering’s The Future of Everything podcast with host Russ Altman. Listen and subscribe here. Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook
undefined
Jun 27, 2021 • 28min

Simona Onori: How ready are we for our electric future?

It now seems more certain than ever that the world will make the all-important transition to electric vehicles, but that shift raises important questions about global preparedness.The world is going to need a lot of batteries to make it happen and engineers are rightly concerned about everything from the availability of raw materials to how many miles can I drive before I run out of juice?Simona Onori is an electrical engineer by training and a professor of energy resources engineering as well as an expert in creating computer models of what that electric future will look like. For instance, she is developing mathematical battery management systems that assess the internal chemistry of a battery to predict how much life is left in it, how safe it is and, yes, how long until that next charge is needed.Onori likens her analyses to “battery biopsies” that can help engineers and everyday drivers get more life out of their batteries. Don’t fret, our electric future is in good hands, Onori reassures listeners in this episode of Stanford Engineering’s The Future of Everything podcast with host Russ Altman. Listen and subscribe here. Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook
undefined
Jun 26, 2021 • 28min

Irene Lo: How math makes markets fairer

Engineer Irene Lo studies markets, but not traditional marketplaces based in cash.Instead, she studies markets for goods/resources that place a high value on social goods like diversity, fairness and equity.Thus, Lo came to help San Francisco create an algorithm to assign kids more fairly to public schools across geographic, social, racial and economic boundaries. As it turns out, math is just the first step. The most challenging part was getting families to trust in the system, begetting a multi-year community engagement effort.Lo is now turning her attention to other markets with social impact, like her work on the system that places medical students in residency programs across the country or one trying to make the palm oil supply chain fairer for farmers.Listen in as Irene Lo explains the changing face of markets to host Russ Altman in this episode of Stanford Engineering’s The Future of Everything podcast. Listen and subscribe here. Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook
undefined
Jun 13, 2021 • 28min

Joseph DeSimone: How 3D printing is changing medicine

Oft-heralded 3-dimensional printers can build objects ranging from simple spoons to advanced running shoes.While those objects are usually made very slowly, the latest printing technologies portend a new era of 3D printing in real-time for use in health care. The possibilities are endless, says Joseph DeSimone, who is an expert in translational medicine – the field of transferring promising technological breakthroughs into real-world products. He says printers he developed have led to the first FDA-approved 3D printed dentures, ultra-thin microneedles that make it easier and more effective to deliver vaccines, and even implantable chemotherapy devices that kill tumors while reducing side effects for patients. From dentistry to oncology, the promise of 3D printed medical devices is only just emerging, as DeSimone explains in this episode of Stanford Engineering’s The Future of Everything podcast with host Russ Altman. Listen and subscribe here. Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook
undefined
Jun 12, 2021 • 28min

Tina Hernandez-Boussard: How data improves the quality of health care

Tina Hernandez-Boussard is an expert in biomedical informatics who says a new era of understanding the real outcomes of our health care systems is on the horizon thanks to big data, artificial intelligence, and the growing availability of electronic health data. She says that the combination of these tools and data holds the promise of providing never-before-possible insights into whether health procedures truly improve patient quality of life and for which populations.With these tools, she says, her field can peer into the “real-world” details hidden in the medical records, even going so far as to use natural language processing to analyze the freeform notes and emails to and from the provider. The examples are virtually limitless: matching health records against data from wearable devices to know when a knee patient is not getting enough physical exercise, cross-referencing prescriptions to learn whether a patient might be susceptible to adverse drug combinations, or even revealing undisclosed medical events such as past mild heart attacks.It’s all there in the data, waiting for us to explore, as Tina Hernandez-Boussard tells bioengineer and host Russ Altman in this episode of Stanford Engineering’s The Future of Everything podcast. Listen and subscribe here. Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook
undefined
Jun 3, 2021 • 28min

Nate Persily: How to restore faith in America’s elections

Nate Persily is a professor at Stanford Law School and an expert in election law.He sees the most recent presidential election as a fundamental change in the way Americans vote. For the first time ever, the majority of voters cast their ballot by mail, rather than at a polling place. It “was an earthquake,” Persily says, speaking metaphorically about the 2020 election’s profound implications for future elections.But not all agree it was a success. Republicans and Democrats are further apart than ever in their beliefs as to whether the recent presidential election was free and fair. Addressing polarization in beliefs regarding the fairness of the election will be very difficult. Until leaders come together in a bipartisan fashion to affirm the legitimacy of an election winner, reform will not be able to do much to address this underlying problem.Failing that, we need to bolster the institutional position of all nonpartisan election administrators who are placing the public interest over party, as Persily tells host Russ Altman in this episode of Stanford Engineering’s The Future of Everything podcast. Listen and subscribe here. Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook
undefined
Jun 2, 2021 • 28min

Krishna Shenoy: How brain-computer connections could end paralysis

Whether by injury or disease, paralysis has afflicted humans through the ages.Only now have science and technology converged to a point where scientists can contemplate a day when computers and the human mind can communicate directly to restore a certain degree of independence to people with debilitating spinal injuries and other physical conditions that impede or prevent movement.Electrical engineer Krishna Shenoy is an expert in such brain-computer interfaces and has built machinery by which humans can control the movement of computer cursors with mere thoughts. Using small chips implanted in the brain itself, Shenoy “listens intelligently” to the electrical “chatter” among a hundred or so of the 100 billion neurons of the brain’s motor cortex and then translates the meaning into language a computer can understand. In this way, Shenoy has allowed a man with paralysis to “write” his thoughts at some 17 words per minute, a record more than double the previous standard.Work remains, but the future of brain-computer interfaces is on the horizon as Krishna Shenoy tells us on this episode of Stanford Engineering’s The Future of Everything podcast with host Russ Altman. Listen and subscribe here. Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook
undefined
May 16, 2021 • 28min

Sam Wineburg: How to improve American students’ fact-checking skills

Sam Wineburg, a research psychologist at Stanford’s Graduate School of Education, recently conducted a nationwide study of the fact-checking skills of thousands of American high school students.He didn’t go about it with a survey asking the kids to self-report their own behaviors. Instead, he devised a live experiment that charged the 3,000 students in the study to determine the veracity of a now-famous bit of fake news from the 2016 election. Wineburg and team were then able to follow along as students tried to find the true source of the video, which had been produced in Russia as part of a disinformation campaign. In the end, just three students – one-tenth of one percent – arrived at the right answer. Rather than blame the kids, however, Wineburg says fault lies with the tools they are using, which have changed so dramatically in speed and scope that their fact-checking skills have had trouble keeping up. All is not lost, he promises, but fixing the problem will require changing not just what information students consume, but the way they think about it, as Wineburg tells host Russ Altman in this episode of Stanford Engineering’s The Future of Everything podcast. Listen and subscribe here. Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook
undefined
May 16, 2021 • 28min

Julie Parsonnet: How faith in herd immunity may be misplaced

Many have now become familiar with the term herd immunity, an idea few outside the infectious disease community knew just a few short months ago.It’s an elusive concept to comprehend, and harder still to achieve, but Stanford epidemiologist Dr. Julie Parsonnet says it’s important to understand just what herd immunity does – and doesn’t – mean for today’s pandemic.Broadly speaking, herd immunity is reached when enough people have either recovered from or have been fully vaccinated against an infectious disease and there are no longer enough susceptible people in the entire population (the herd) to sustain transmission. Herd immunity doesn’t mean there won’t be cases, only that when they crop up, they will then die out. Parsonnet says this term is meant for epidemiologists to model what things will and won’t work; herd immunity is never really a public health goal in and of itself. Parsonnet also says that, in models, there are many obstacles to attaining herd immunity, including vaccine hesitancy, especially in people most likely to transmit the infection (young adults); imperfect effectiveness of the vaccine; movement of people; carriage of the virus in non-human hosts; and the continuous appearance of variants. Importantly, Parsonnet says, herd immunity is unlikely to be permanent. Society must remain vigilant, continuously limiting the number of susceptible people to keep the herd safe. She therefore counsels deemphasizing the concept and instead bringing the diversity of communities into the conversation to achieve high levels of protection in the U.S. and globally. She says every vaccine given is a step in the direction of “normal.”In this episode of Stanford Engineering’s The Future of Everything podcast, host Russ Altman and Parsonnet also talk about her other research showing that average human body temperature is on the decline worldwide. Listen and subscribe here. Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook
undefined
May 4, 2021 • 28min

Maneesh Agrawala: How AI is changing video editing

Imagine typing words into a text editor and watching on a nearby television as a well-known celebrity speaks those words within seconds.Computer graphics expert Maneesh Agrawala has imagined it and has created a video editing software that can do it, too. Given enough raw video, Agrawala’s application can produce polished, photorealistic video of any person saying virtually anything he types in.While he acknowledges concerns about manufactured “deep fakes” of political leaders or others speaking words they never said, Agrawala chooses to focus on the profound upside. He envisions the television and film industries using his technology to forgo costly reshoots, for instance, or medical professionals helping people with damaged vocal cords regain their natural voices.In the end, while ethical and legal frameworks are being developed to address deep fakes with all due seriousness they deserve, Agrawala says the benefits of the technology, and his passion for it, gets at the most basic of all human endeavors — better communication. Agrawala tells host Russ Altman all about it in this episode of Stanford Engineering’s The Future of Everything podcast. Listen and subscribe here. Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app