

Gradient Dissent: Conversations on AI
Lukas Biewald
Join Lukas Biewald on Gradient Dissent, an AI-focused podcast brought to you by Weights & Biases. Dive into fascinating conversations with industry giants from NVIDIA, Meta, Google, Lyft, OpenAI, and more. Explore the cutting-edge of AI and learn the intricacies of bringing models into production.
Episodes
Mentioned books

Jul 30, 2021 • 50min
Xavier Amatriain — Building AI-powered Primary Care
Xavier shares his experience deploying healthcare models, augmenting primary care with AI, the challenges of "ground truth" in medicine, and robustness in ML.
---
Xavier Amatriain is co-founder and CTO of Curai, an ML-based primary care chat system. Previously, he was VP of Engineering at Quora, and Research/Engineering Director at Neflix, where he started and led the Algorithms team responsible for Netflix's recommendation systems.
---
⏳ Timestamps:
0:00 Sneak peak, intro
0:49 What is Curai?
5:48 The role of AI within Curai
8:44 Why Curai keeps humans in the loop
15:00 Measuring diagnostic accuracy
18:53 Patient safety
22:39 Different types of models at Curai
25:42 Using GPT-3 to generate training data
32:13 How Curai monitors and debugs models
35:19 Model explainability
39:27 Robustness in ML
45:52 Connecting metrics to impact
49:32 Outro
🌟 Show notes:
- http://wandb.me/gd-xavier-amatriain
- Transcription of the episode
- Links to papers, projects, and people
---
Follow us on Twitter!
📍 https://twitter.com/wandb_gd
Get our podcast on these platforms:
👉 Apple Podcasts: http://wandb.me/apple-podcasts
👉 Spotify: http://wandb.me/spotify
👉 Google Podcasts: http://wandb.me/google-podcasts
👉 YouTube: http://wandb.me/youtube
👉 Soundcloud: http://wandb.me/soundcloud

Jul 16, 2021 • 44min
Spence Green — Enterprise-scale Machine Translation
Spence shares his experience creating a product around human-in-the-loop machine translation, and explains how machine translation has evolved over the years.
---
Spence Green is co-founder and CEO of Lilt, an AI-powered language translation platform. Lilt combines human translators and machine translation in order to produce high-quality translations more efficiently.
---
🌟 Show notes:
- http://wandb.me/gd-spence-green
- Transcription of the episode
- Links to papers, projects, and people
⏳ Timestamps:
0:00 Sneak peak, intro
0:45 The story behind Lilt
3:08 Statistical MT vs neural MT
6:30 Domain adaptation and personalized models
8:00 The emergence of neural MT and development of Lilt
13:09 What success looks like for Lilt
18:20 Models that self-correct for gender bias
19:39 How Lilt runs its models in production
26:33 How far can MT go?
29:55 Why Lilt cares about human-computer interaction
35:04 Bilingual grammatical error correction
37:18 Human parity in MT
39:41 The unexpected challenges of prototype to production
---
Get our podcast on these platforms:
👉 Apple Podcasts: http://wandb.me/apple-podcasts
👉 Spotify: http://wandb.me/spotify
👉 Google Podcasts: http://wandb.me/google-podcasts
👉 YouTube: http://wandb.me/youtube
👉 Soundcloud: http://wandb.me/soundcloud
Join our community of ML practitioners where we host AMAs, share interesting projects and meet other people working in Deep Learning:
http://wandb.me/slack
Check out Fully Connected, which features curated machine learning reports by researchers exploring deep learning techniques, Kagglers showcasing winning models, industry leaders sharing best practices, and more:
https://wandb.ai/fully-connected

Jul 8, 2021 • 1h 5min
Roger & DJ — The Rise of Big Data and CA's COVID-19 Response
Roger and DJ share some of the history behind data science as we know it today, and reflect on their experiences working on California's COVID-19 response.
---
Roger Magoulas is Senior Director of Data Strategy at Astronomer, where he works on data infrastructure, analytics, and community development. Previously, he was VP of Research at O'Reilly and co-chair of O'Reilly's Strata Data and AI Conference.
DJ Patil is a board member and former CTO of Devoted Health, a healthcare company for seniors. He was also Chief Data Scientist under the Obama administration and the Head of Data Science at LinkedIn.
Roger and DJ recently volunteered for the California COVID-19 response, and worked with data to understand case counts, bed capacities and the impact of intervention.
Connect with Roger and DJ:
📍 Roger's Twitter: https://twitter.com/rogerm
📍 DJ's Twitter: https://twitter.com/dpatil
---
🌟 Transcript: http://wandb.me/gd-roger-and-dj 🌟
⏳ Timestamps:
0:00 Sneak peek, intro
1:03 Coining the terms "big data" and "data scientist"
7:12 The rise of data science teams
15:28 Big Data, Hadoop, and Spark
23:10 The importance of using the right tools
29:20 BLUF: Bottom Line Up Front
34:44 California's COVID response
41:21 The human aspects of responding to COVID
48:33 Reflecting on the impact of COVID interventions
57:06 Advice on doing meaningful data science work
1:04:18 Outro
🍀 Links:
1. "MapReduce: Simplified Data Processing on Large Clusters" (Dean and Ghemawat, 2004): https://research.google/pubs/pub62/
2. "Big Data: Technologies and Techniques for Large-Scale Data" (Magoulas and Lorica, 2009): https://academics.uccs.edu/~ooluwada/courses/datamining/ExtraReading/BigData
3. The O'RLY book covers: https://www.businessinsider.com/these-hilarious-memes-perfectly-capture-what-its-like-to-work-in-tech-2016-4
4. "The Premonition" (Lewis, 2021): https://www.npr.org/2021/05/03/991570372/michael-lewis-the-premonition-is-a-sweeping-indictment-of-the-cdc
5. Why California's beaches are glowing with bioluminescence: https://www.youtube.com/watch?v=AVYSr19ReOs
6.
7. Sturgis Motorcyle Rally: https://en.wikipedia.org/wiki/Sturgis_Motorcycle_Rally
---
Get our podcast on these platforms:
👉 Apple Podcasts: http://wandb.me/apple-podcasts
👉 Spotify: http://wandb.me/spotify
👉 Google Podcasts: http://wandb.me/google-podcasts
👉 YouTube: http://wandb.me/youtube
👉 Soundcloud: http://wandb.me/soundcloud
Join our community of ML practitioners where we host AMAs, share interesting projects and meet other people working in Deep Learning:
http://wandb.me/slack
Check out Fully Connected, which features curated machine learning reports by researchers exploring deep learning techniques, Kagglers showcasing winning models, industry leaders sharing best practices, and more:
https://wandb.ai/fully-connected

Jul 1, 2021 • 41min
Amelia & Filip — How Pandora Deploys ML Models into Production
Amelia and Filip give insights into the recommender systems powering Pandora, from developing models to balancing effectiveness and efficiency in production.
---
Amelia Nybakke is a Software Engineer at Pandora. Her team is responsible for the production system that serves models to listeners.
Filip Korzeniowski is a Senior Scientist at Pandora working on recommender systems. Before that, he was a PhD student working on deep neural networks for acoustic and language modeling applied to musical audio recordings.
Connect with Amelia and Filip:
📍 Amelia's LinkedIn: https://www.linkedin.com/in/amelia-nybakke-60bba5107/
📍 Filip's LinkedIn: https://www.linkedin.com/in/filip-korzeniowski-28b33815a/
---
⏳ Timestamps:
0:00 Sneak peek, intro
0:42 What type of ML models are at Pandora?
3:39 What makes two songs similar or not similar?
7:33 Improving models and A/B testing
8:52 Chaining, retraining, versioning, and tracking models
13:29 Useful development tools
15:10 Debugging models
18:28 Communicating progress
20:33 Tuning and improving models
23:08 How Pandora puts models into production
29:45 Bias in ML models
36:01 Repetition vs novelty in recommended songs
38:01 The bottlenecks of deployment
🌟 Transcript: http://wandb.me/gd-amelia-and-filip 🌟
Links:
📍 Amelia's "Women's History Month" playlist: https://www.pandora.com/playlist/PL:1407374934299927:100514833
---
Get our podcast on these platforms:
👉 Apple Podcasts: http://wandb.me/apple-podcasts
👉 Spotify: http://wandb.me/spotify
👉 Google Podcasts: http://wandb.me/google-podcasts
👉 YouTube: http://wandb.me/youtube
👉 Soundcloud: http://wandb.me/soundcloud
Join our community of ML practitioners where we host AMAs, share interesting projects and meet other people working in Deep Learning:
http://wandb.me/slack
Check out Fully Connected, which features curated machine learning reports by researchers exploring deep learning techniques, Kagglers showcasing winning models, industry leaders sharing best practices, and more:
https://wandb.ai/fully-connected

Jun 24, 2021 • 48min
Luis Ceze — Accelerating Machine Learning Systems
From Apache TVM to OctoML, Luis gives direct insight into the world of ML hardware optimization, and where systems optimization is heading.
---
Luis Ceze is co-founder and CEO of OctoML, co-author of the Apache TVM Project, and Professor of Computer Science and Engineering at the University of Washington. His research focuses on the intersection of computer architecture, programming languages, machine learning, and molecular biology.
Connect with Luis:
📍 Twitter: https://twitter.com/luisceze
📍 University of Washington profile: https://homes.cs.washington.edu/~luisceze/
---
⏳ Timestamps:
0:00 Intro and sneak peek
0:59 What is TVM?
8:57 Freedom of choice in software and hardware stacks
15:53 How new libraries can improve system performance
20:10 Trade-offs between efficiency and complexity
24:35 Specialized instructions
26:34 The future of hardware design and research
30:03 Where does architecture and research go from here?
30:56 The environmental impact of efficiency
32:49 Optimizing and trade-offs
37:54 What is OctoML and the Octomizer?
42:31 Automating systems design with and for ML
44:18 ML and molecular biology
46:09 The challenges of deployment and post-deployment
🌟 Transcript: http://wandb.me/gd-luis-ceze 🌟
Links:
1. OctoML: https://octoml.ai/
2. Apache TVM: https://tvm.apache.org/
3. "Scalable and Intelligent Learning Systems" (Chen, 2019): https://digital.lib.washington.edu/researchworks/handle/1773/44766
4. "Principled Optimization Of Dynamic Neural Networks" (Roesch, 2020): https://digital.lib.washington.edu/researchworks/handle/1773/46765
5. "Cross-Stack Co-Design for Efficient and Adaptable Hardware Acceleration" (Moreau, 2018): https://digital.lib.washington.edu/researchworks/handle/1773/43349
6. "TVM: An Automated End-to-End Optimizing Compiler for Deep Learning" (Chen et al., 2018): https://www.usenix.org/system/files/osdi18-chen.pdf
7. Porcupine is a molecular tagging system introduced in "Rapid and robust assembly and decoding of molecular tags with DNA-based nanopore signatures" (Doroschak et al., 2020): https://www.nature.com/articles/s41467-020-19151-8
---
Get our podcast on these platforms:
👉 Apple Podcasts: http://wandb.me/apple-podcasts
👉 Spotify: http://wandb.me/spotify
👉 Google Podcasts: http://wandb.me/google-podcasts
👉 YouTube: http://wandb.me/youtube
👉 Soundcloud: http://wandb.me/soundcloud
Join our community of ML practitioners where we host AMAs, share interesting projects and meet other people working in Deep Learning:
http://wandb.me/slack
Check out Fully Connected, which features curated machine learning reports by researchers exploring deep learning techniques, Kagglers showcasing winning models, industry leaders sharing best practices, and more:
https://wandb.ai/fully-connected

Jun 17, 2021 • 43min
Matthew Davis — Bringing Genetic Insights to Everyone
Matthew explains how combining machine learning and computational biology can provide mainstream medicine with better diagnostics and insights.
---
Matthew Davis is Head of AI at Invitae, the largest and fastest growing genetic testing company in the world. His research includes bioinformatics, computational biology, NLP, reinforcement learning, and information retrieval. Matthew was previously at IBM Research AI, where he led a research team focused on improving AI systems.
Connect with Matthew:
📍 Personal website: https://www.linkedin.com/in/matthew-davis-51233386/
📍 Twitter: https://twitter.com/deadsmiths
---
⏳ Timestamps:
0:00 Sneak peek, intro
1:02 What is Invitae?
2:58 Why genetic testing can help everyone
7:51 How Invitae uses ML techniques
14:02 Modeling molecules and deciding which genes to look at
22:22 NLP applications in bioinformatics
27:10 Team structure at Invitae
36:50 Why reasoning is an underrated topic in ML
40:25 Why having a clear buy-in is important
🌟 Transcript: http://wandb.me/gd-matthew-davis 🌟
Links:
📍 Invitae: https://www.invitae.com/en
📍 Careers at Invitae: https://www.invitae.com/en/careers/
---
Get our podcast on these platforms:
👉 Apple Podcasts: http://wandb.me/apple-podcasts
👉 Spotify: http://wandb.me/spotify
👉 Google Podcasts: http://wandb.me/google-podcasts
👉 YouTube: http://wandb.me/youtube
👉 Soundcloud: http://wandb.me/soundcloud
Join our community of ML practitioners where we host AMAs, share interesting projects and meet other people working in Deep Learning:
http://wandb.me/slack
Check out Fully Connected, which features curated machine learning reports by researchers exploring deep learning techniques, Kagglers showcasing winning models, industry leaders sharing best practices, and more:
https://wandb.ai/fully-connected

Jun 10, 2021 • 47min
Clément Delangue — The Power of the Open Source Community
Clem explains the virtuous cycles behind the creation and success of Hugging Face, and shares his thoughts on where NLP is heading.
---
Clément Delangue is co-founder and CEO of Hugging Face, the AI community building the future. Hugging Face started as an open source NLP library and has quickly grown into a commercial product used by over 5,000 companies.
Connect with Clem:
📍 Twitter: https://twitter.com/ClementDelangue
📍 LinkedIn: https://www.linkedin.com/in/clementdelangue/
---
🌟 Transcript: http://wandb.me/gd-clement-delangue 🌟
⏳ Timestamps:
0:00 Sneak peek and intro
0:56 What is Hugging Face?
4:15 The success of Hugging Face Transformers
7:53 Open source and virtuous cycles
10:37 Working with both TensorFlow and PyTorch
13:20 The "Write With Transformer" project
14:36 Transfer learning in NLP
16:43 BERT and DistilBERT
22:33 GPT
26:32 The power of the open source community
29:40 Current applications of NLP
35:15 The Turing Test and conversational AI
41:19 Why speech is an upcoming field within NLP
43:44 The human challenges of machine learning
Links Discussed:
📍 Write With Transformer, Hugging Face Transformer's text generation demo: https://transformer.huggingface.co/
📍 "Attention Is All You Need" (Vaswani et al., 2017): https://arxiv.org/abs/1706.03762
📍 EleutherAI and GPT-Neo: https://github.com/EleutherAI/gpt-neo]
📍 Rasa, open source conversational AI: https://rasa.com/
📍 Roblox article on BERT: https://blog.roblox.com/2020/05/scaled-bert-serve-1-billion-daily-requests-cpus/
---
Get our podcast on these platforms:
👉 Apple Podcasts: http://wandb.me/apple-podcasts
👉 Spotify: http://wandb.me/spotify
👉 Google Podcasts: http://wandb.me/google-podcasts
👉 YouTube: http://wandb.me/youtube
👉 Soundcloud: http://wandb.me/soundcloud
Join our community of ML practitioners where we host AMAs, share interesting projects and meet other people working in Deep Learning:
http://wandb.me/slack
Check out Fully Connected, which features curated machine learning reports by researchers exploring deep learning techniques, Kagglers showcasing winning models, industry leaders sharing best practices, and more:
https://wandb.ai/fully-connected

7 snips
Jun 3, 2021 • 44min
Wojciech Zaremba — What Could Make AI Conscious?
Wojciech Zaremba, co-founder of OpenAI and expert in robotics and AI safety, shares fascinating insights on the principles that guide OpenAI. He discusses future stages of AI development and the intriguing Fermi Paradox. Wojciech dives into the complex relationship between AI and consciousness, exploring what could make an AI truly sentient. He also shares his passion for robotics and the ethical responsibilities that come with developing AGI, blending technical depth with philosophical ponderings.

May 27, 2021 • 57min
Phil Brown — How IPUs are Advancing Machine Intelligence
Phil shares some of the approaches, like sparsity and low precision, behind the breakthrough performance of Graphcore's Intelligence Processing Units (IPUs).
---
Phil Brown leads the Applications team at Graphcore, where they're building high-performance machine learning applications for their Intelligence Processing Units (IPUs), new processors specifically designed for AI compute.
Connect with Phil:
LinkedIn: https://www.linkedin.com/in/philipsbrown/
Twitter: https://twitter.com/phil_s_brown
---
0:00 Sneak peek, intro
1:44 From computational chemistry to Graphcore
5:16 The simulations behind weather prediction
10:54 Measuring improvement in weather prediction systems
15:35 How high performance computing and ML have different needs
19:00 The potential of sparse training
31:08 IPUs and computer architecture for machine learning
39:10 On performance improvements
44:43 The impacts of increasing computing capability
50:24 The ML chicken and egg problem
52:00 The challenges of converging at scale and bringing hardware to market
Links Discussed:
Rigging the Lottery: Making All Tickets Winners (Evci et al., 2019): https://arxiv.org/abs/1911.11134
Graphcore MK2 Benchmarks: https://www.graphcore.ai/mk2-benchmarks
Check out the transcription and discover more awesome ML projects: http://wandb.me/gd-phil-brown
---
Get our podcast on these platforms:
Apple Podcasts: http://wandb.me/apple-podcasts
Spotify: http://wandb.me/spotify
Google Podcasts: http://wandb.me/google-podcasts
YouTube: http://wandb.me/youtube
Soundcloud: http://wandb.me/soundcloud
Join our community of ML practitioners where we host AMAs, share interesting projects and meet other people working in Deep Learning: http://wandb.me/slack
Check out our Gallery, which features curated machine learning reports by researchers exploring deep learning techniques, Kagglers showcasing winning models, industry leaders sharing best practices, and more: https://wandb.ai/gallery

May 20, 2021 • 45min
Alyssa Simpson Rochwerger — Responsible ML in the Real World
From working on COVID-19 vaccine rollout to writing a book on responsible ML, Alyssa shares her thoughts on meaningful projects and the importance of teamwork.
---
Alyssa Simpson Rochwerger is as a Director of Product at Blue Shield of California, pursuing her dream of using technology to improve healthcare. She has over a decade of experience in building technical data-driven products and has held numerous leadership roles for machine learning organizations, including VP of AI and Data at Appen and Director of Product at IBM Watson.
Connect with Sean:
Personal website: https://seanjtaylor.com/
Twitter: https://twitter.com/seanjtaylor
LinkedIn: https://www.linkedin.com/in/seanjtaylor/
---
Topics Discussed:
0:00 Sneak peak, intro
1:17 Working on COVID-19 vaccine rollout in California
6:50 Real World AI
12:26 Diagnosing bias in models
17:43 Common challenges in ML
21:56 Finding meaningful projects
24:28 ML applications in health insurance
31:21 Longitudinal health records and data cleaning
38:24 Following your interests
40:21 Why teamwork is crucial
Transcript:
http://wandb.me/gd-alyssa-s-rochwerger
Links Discussed:
My Turn: https://myturn.ca.gov/
"Turn the Ship Around!": https://www.penguinrandomhouse.com/books/314163/turn-the-ship-around-by-l-david-marquet/
---
Get our podcast on these platforms:
Apple Podcasts: http://wandb.me/apple-podcasts
Spotify: http://wandb.me/spotify
Google Podcasts: http://wandb.me/google-podcasts
YouTube: http://wandb.me/youtube
Soundcloud: http://wandb.me/soundcloud
Join our community of ML practitioners where we host AMAs, share interesting projects and meet other people working in Deep Learning:
http://wandb.me/slack
Check out Fully Connected, which features curated machine learning reports by researchers exploring deep learning techniques, Kagglers showcasing winning models, industry leaders sharing best practices, and more:
https://wandb.ai/fully-connected


