Gradient Dissent: Conversations on AI cover image

Gradient Dissent: Conversations on AI

Latest episodes

undefined
Oct 6, 2022 • 1h

Jehan Wickramasuriya — AI in High-Stress Scenarios

Jehan Wickramasuriya is the Vice President of AI, Platform & Data Services at Motorola Solutions, a global leader in public safety and enterprise security.In this episode, Jehan discusses how Motorola Solutions uses AI to simplify data streams to help maximize human potential in high-stress situations. He also shares his thoughts on augmenting synthetic data with real data and the challenges posed in partnering with startups.Show notes (transcript and links): http://wandb.me/gd-jehan-wickramasuriya-⏳ Timestamps: 00:00 Intro00:42 How AI fits into the safety/security industry 09:33 Event matching and object detection14:47 Running models on the right hardware17:46 Scaling model evaluation23:58 Monitoring and evaluation challenges26:30 Identifying and sorting issues30:27 Bridging vision and language domains39:25 Challenges and promises of natural language technology41:35 Production environment43:15 Using synthetic data49:59 Working with startups53:55 Multi-task learning, meta-learning, and user experience56:44 Optimization and testing across multiple platforms59:36 Outro-Connect with Jehan and Motorola Solutions:📍 Jehan on LinkedIn: https://www.linkedin.com/in/jehanw/📍 Jehan on Twitter: https://twitter.com/jehan/📍 Motorola Solutions on Twitter: https://twitter.com/MotoSolutions/📍 Careers at Motorola Solutions: https://www.motorolasolutions.com/en_us/about/careers.html-💬 Host: Lukas Biewald📹 Producers: Riley Fields, Cayla Sharp, Angelica Pan, Lavanya Shukla-Subscribe and listen to our podcast today!👉 Apple Podcasts: http://wandb.me/apple-podcasts​​👉 Google Podcasts: http://wandb.me/google-podcasts​👉 Spotify: http://wandb.me/spotify​
undefined
Sep 15, 2022 • 45min

Will Falcon — Making Lightning the Apple of ML

Will Falcon is the CEO and co-founder of Lightning AI, a platform that enables users to quickly build and publish ML models.In this episode, Will explains how Lightning addresses the challenges of a fragmented AI ecosystem and reveals which framework PyTorch Lightning was originally built upon (hint: not PyTorch!) He also shares lessons he took from his experience serving in the military and offers a recommendation to veterans who want to work in tech.Show notes (transcript and links): http://wandb.me/gd-will-falcon---⏳ Timestamps: 00:00 Intro01:00 From SEAL training to FAIR04:17 Stress-testing Lightning07:55 Choosing PyTorch over TensorFlow and other frameworks13:16 Components of the Lightning platform17:01 Launching Lightning from Facebook19:09 Similarities between leadership and research22:08 Lessons from the military26:56 Scaling PyTorch Lightning to Lightning AI33:21 Hiring the right people35:21 The future of Lightning39:53 Reducing algorithm complexity in self-supervised learning42:19 A fragmented ML landscape44:35 Outro---Connect with Lightning📍 Website: https://lightning.ai📍 Twitter: https://twitter.com/LightningAI📍 LinkedIn: https://www.linkedin.com/company/pytorch-lightning/📍 Careers: https://boards.greenhouse.io/lightningai---💬 Host: Lukas Biewald📹 Producers: Riley Fields, Anish Shah, Cayla Sharp, Angelica Pan, Lavanya Shukla---Subscribe and listen to our podcast today!👉 Apple Podcasts: http://wandb.me/apple-podcasts​​👉 Google Podcasts: http://wandb.me/google-podcasts​👉 Spotify: http://wandb.me/spotify​
undefined
Aug 26, 2022 • 50min

Aaron Colak — ML and NLP in Experience Management

Aaron Colak is the Leader of Core Machine Learning at Qualtrics, an experiment management company that takes large language models and applies them to real-world, B2B use cases.In this episode, Aaron describes mixing classical linguistic analysis with deep learning models and how Qualtrics organized their machine learning organizations and model to leverage the best of these techniques. He also explains how advances in NLP have invited new opportunities in low-resource languages.Show notes (transcript and links): http://wandb.me/gd-aaron-colak---⏳ Timestamps: 00:00 Intro00:57 Evolving from surveys to experience management04:56 Detecting sentiment with ML10:57 Working with large language models and rule-based systems14:50 Zero-shot learning, NLP, and low-resource languages20:11 Letting customers control data25:13 Deep learning and tabular data28:40 Hyperscalers and performance monitoring34:54 Combining deep learning with linguistics40:03 A sense of accomplishment42:52 Causality and observational data in healthcare45:09 Challenges of interdisciplinary collaboration49:27 Outro---Connect with Aaron and Qualtrics📍 Aaron on LinkedIn: https://www.linkedin.com/in/aaron-r-colak-3522308/📍 Qualtrics on Twitter: https://twitter.com/qualtrics/📍 Careers at Qualtrics: https://www.qualtrics.com/careers/---💬 Host: Lukas Biewald📹 Producers: Riley Fields, Cayla Sharp, Angelica Pan, Lavanya Shukla---Subscribe and listen to our podcast today!👉 Apple Podcasts: http://wandb.me/apple-podcasts​​👉 Google Podcasts: http://wandb.me/google-podcasts​👉 Spotify: http://wandb.me/spotify​
undefined
Aug 4, 2022 • 58min

Jordan Fisher — Skipping the Line with Autonomous Checkout

Jordan Fisher is the CEO and co-founder of Standard AI, an autonomous checkout company that’s pushing the boundaries of computer vision.In this episode, Jordan discusses “the Wild West” of the MLOps stack and tells Lukas why Rust beats Python. He also explains why AutoML shouldn't be overlooked and uses a bag of chips to help explain the Manifold Hypothesis.Show notes (transcript and links): http://wandb.me/gd-jordan-fisher---⏳ Timestamps: 00:00 Intro00:40 The origins of Standard AI08:30 Getting Standard into stores18:00 Supervised learning, the advent of synthetic data, and the manifold hypothesis24:23 What's important in a MLOps stack27:32 The merits of AutoML30:00 Deep learning frameworks33:02 Python versus Rust39:32 Raw camera data versus video42:47 The future of autonomous checkout48:02 Sharing the StandardSim data set52:30 Picking the right tools54:30 Overcoming dynamic data set challenges57:35 Outro---Connect with Jordan and Standard AI📍 Jordan on LinkedIn: https://www.linkedin.com/in/jordan-fisher-81145025/📍 Standard AI on Twitter: https://twitter.com/StandardAi📍 Careers at Standard AI: https://careers.standard.ai/---💬 Host: Lukas Biewald📹 Producers: Riley Fields, Cayla Sharp, Angelica Pan, Lavanya Shukla---Subscribe and listen to our podcast today!👉 Apple Podcasts: http://wandb.me/apple-podcasts​​👉 Google Podcasts: http://wandb.me/google-podcasts​👉 Spotify: http://wandb.me/spotify​
undefined
Jul 14, 2022 • 1h 9min

Drago Anguelov — Robustness, Safety, and Scalability at Waymo

Drago Anguelov is a Distinguished Scientist and Head of Research at Waymo, an autonomous driving technology company and subsidiary of Alphabet Inc.We begin by discussing Drago's work on the original Inception architecture, winner of the 2014 ImageNet challenge and introduction of the inception module. Then, we explore milestones and current trends in autonomous driving, from Waymo's release of the Open Dataset to the trade-offs between modular and end-to-end systems.Drago also shares his thoughts on finding rare examples, and the challenges of creating scalable and robust systems.Show notes (transcript and links): http://wandb.me/gd-drago-anguelov---⏳ Timestamps: 0:00 Intro0:45 The story behind the Inception architecture13:51 Trends and milestones in autonomous vehicles23:52 The challenges of scalability and simulation30:19 Why LiDar and mapping are useful35:31 Waymo Via and autonomous trucking37:31 Robustness and unsupervised domain adaptation40:44 Why Waymo released the Waymo Open Dataset49:02 The domain gap between simulation and the real world56:40 Finding rare examples1:04:34 The challenges of production requirements1:08:36 Outro---Connect with Drago & Waymo📍 Drago on LinkedIn: https://www.linkedin.com/in/dragomiranguelov/📍 Waymo on Twitter: https://twitter.com/waymo/📍 Careers at Waymo: https://waymo.com/careers/---Links:📍 Inception v1: https://arxiv.org/abs/1409.4842📍 "SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation", Qiangeng Xu et al. (2021), https://arxiv.org/abs/2108.06709📍 "GradTail: Learning Long-Tailed Data Using Gradient-based Sample Weighting", Zhao Chen et al. (2022), https://arxiv.org/abs/2201.05938---💬 Host: Lukas Biewald📹 Producers: Cayla Sharp, Angelica Pan, Lavanya Shukla---Subscribe and listen to our podcast today!👉 Apple Podcasts: http://wandb.me/apple-podcasts​​👉 Google Podcasts: http://wandb.me/google-podcasts​👉 Spotify: http://wandb.me/spotify​
undefined
Jul 7, 2022 • 1h 6min

James Cham — Investing in the Intersection of Business and Technology

James Cham is a co-founder and partner at Bloomberg Beta, an early-stage venture firm that invests in machine learning and the future of work, the intersection between business and technology.James explains how his approach to investing in AI has developed over the last decade, which signals of success he looks for in the ever-adapting world of venture startups (tip: look for the "gradient of admiration"), and why it's so important to demystify ML for executives and decision-makers.Lukas and James also discuss how new technologies create new business models, and what the ethical considerations of a world where machine learning is accepted to be possibly fallible would be like.Show notes (transcript and links): http://wandb.me/gd-james-cham---⏳ Timestamps: 0:00 Intro0:46 How investment in AI has changed and developed7:08 Creating the first MI landscape infographics10:30 The impact of ML on organizations and management17:40 Demystifying ML for executives21:40 Why signals of successful startups change over time27:07 ML and the emergence of new business models37:58 New technology vs new consumer goods39:50 What James considers when investing44:19 Ethical considerations of accepting that ML models are fallible50:30 Reflecting on past investment decisions52:56 Thoughts on consciousness and Theseus' paradox59:08 Why it's important to increase general ML literacy1:03:09 Outro1:03:30 Bonus: How James' faith informs his thoughts on ML---Connect with James:📍 Twitter: https://twitter.com/jamescham📍 Bloomberg Beta: https://github.com/Bloomberg-Beta/Manual---Links:📍 "Street-Level Algorithms: A Theory at the Gaps Between Policy and Decisions" by Ali Alkhatib and Michael Bernstein (2019): https://doi.org/10.1145/3290605.3300760---💬 Host: Lukas Biewald📹 Producers: Cayla Sharp, Angelica Pan, Lavanya Shukla---Subscribe and listen to our podcast today!👉 Apple Podcasts: http://wandb.me/apple-podcasts​​👉 Google Podcasts: http://wandb.me/google-podcasts​👉 Spotify: http://wandb.me/spotify​
undefined
Jun 17, 2022 • 36min

Boris Dayma — The Story Behind DALL·E mini, the Viral Phenomenon

Check out this report by Boris about DALL-E mini:https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini-Generate-images-from-any-text-prompt--VmlldzoyMDE4NDAyhttps://wandb.ai/_scott/wandb_example/reports/Collaboration-in-ML-made-easy-with-W-B-Teams--VmlldzoxMjcwMDU5https://twitter.com/weirddalleConnect with Boris:📍 Twitter: https://twitter.com/borisdayma---💬 Host: Lukas Biewald📹 Producers: Cayla Sharp, Angelica Pan, Sanyam Bhutani, Lavanya Shukla---Subscribe and listen to our podcast today!👉 Apple Podcasts: http://wandb.me/apple-podcasts​​👉 Google Podcasts: http://wandb.me/google-podcasts​👉 Spotify: http://wandb.me/spotify​
undefined
Jun 9, 2022 • 1h 1min

Tristan Handy — The Work Behind the Data Work

Tristan Handy is CEO and founder of dbt Labs. dbt (data build tool) simplifies the data transformation workflow and helps organizations make better decisions.Lukas and Tristan dive into the history of the modern data stack and the subsequent challenges that dbt was created to address; communities of identity and product-led growth; and thoughts on why SQL has survived and thrived for so long. Tristan also shares his hopes for the future of BI tools and the data stack.Show notes (transcript and links): http://wandb.me/gd-tristan-handy---⏳ Timestamps: 0:00 Intro0:40 How dbt makes data transformation easier4:52 dbt and avoiding bad data habits14:23 Agreeing on organizational ground truths19:04 Staying current while running a company22:15 The origin story of dbt26:08 Why dbt is conceptually simple but hard to execute 34:47 The dbt community and the bottom-up mindset41:50 The future of data and operations47:41 dbt and machine learning49:17 Why SQL is so ubiquitous55:20 Bridging the gap between the ML and data worlds1:00:22 Outro---Connect with Tristan:📍 Twitter: https://twitter.com/jthandy📍 The Analytics Engineering Roundup: https://roundup.getdbt.com/---💬 Host: Lukas Biewald📹 Producers: Cayla Sharp, Angelica Pan, Sanyam Bhutani, Lavanya Shukla---Subscribe and listen to our podcast today!👉 Apple Podcasts: http://wandb.me/apple-podcasts​​👉 Google Podcasts: http://wandb.me/google-podcasts​👉 Spotify: http://wandb.me/spotify​
undefined
May 12, 2022 • 45min

Johannes Otterbach — Unlocking ML for Traditional Companies

Johannes Otterbach is VP of Machine Learning Research at Merantix Momentum, an ML consulting studio that helps their clients build AI solutions.Johannes and Lukas talk about Johannes' background in physics and applications of ML to quantum computing, why Merantix is investing in creating a cloud-agnostic tech stack, and the unique challenges of developing and deploying models for different customers. They also discuss some of Johannes' articles on the impact of NLP models and the future of AI regulations.Show notes (transcript and links): http://wandb.me/gd-johannes-otterbach---⏳ Timestamps: 0:00 Intro1:04 Quantum computing and ML applications9:21 Merantix, Ventures, and ML consulting19:09 Building a cloud-agnostic tech stack24:40 The open source tooling ecosystem 30:28 Handing off models to customers31:42 The impact of NLP models on the real world35:40 Thoughts on AI and regulation40:10 Statistical physics and optimization problems42:50 The challenges of getting high-quality data44:30 Outro---Connect with Johannes:📍 LinkedIn: https://twitter.com/jsotterbach📍 Personal website: http://jotterbach.github.io/📍 Careers at Merantix Momentum: https://merantix-momentum.com/about#jobs---💬 Host: Lukas Biewald📹 Producers: Cayla Sharp, Angelica Pan, Sanyam Bhutani, Lavanya Shukla---Subscribe and listen to our podcast today!👉 Apple Podcasts: http://wandb.me/apple-podcasts​​👉 Google Podcasts: http://wandb.me/google-podcasts​👉 Spotify: http://wandb.me/spotify​
undefined
Apr 21, 2022 • 46min

Mircea Neagovici — Robotic Process Automation (RPA) and ML

Mircea Neagovici is VP, AI and Research at UiPath, where his team works on task mining and other ways of combining robotic process automation (RPA) with machine learning for their B2B products.Mircea and Lukas talk about the challenges of allowing customers to fine-tune their models, the trade-offs between traditional ML and more complex deep learning models, and how Mircea transitioned from a more traditional software engineering role to running a machine learning organization.Show notes (transcript and links): http://wandb.me/gd-mircea-neagovici---⏳ Timestamps: 0:00 Intro1:05 Robotic Process Automation (RPA)4:20 RPA and machine learning at UiPath8:20 Fine-tuning & PyTorch vs TensorFlow14:50 Monitoring models in production16:33 Task mining22:37 Trade-offs in ML models29:45 Transitioning from software engineering to ML34:02 ML teams vs engineering teams40:41 Spending more time on data43:55 The organizational machinery behind ML models45:57 Outro---Connect with Mircea:📍 LinkedIn: https://www.linkedin.com/in/mirceaneagovici/📍 Careers at UiPath: https://www.uipath.com/company/careers---💬 Host: Lukas Biewald📹 Producers: Cayla Sharp, Angelica Pan, Sanyam Bhutani, Lavanya Shukla

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app