The AI Fundamentalists

Dr. Andrew Clark & Sid Mangalik
undefined
9 snips
Feb 1, 2025 • 30min

Agentic AI: Here we go again

Agentic AI is the latest foray into big-bet promises for businesses and society at large. While promising autonomy and efficiency, AI agents raise fundamental questions about their accuracy, governance, and the potential pitfalls of over-reliance on automation. Does this story sound vaguely familiar? Hold that thought. This discussion about the over-under of certain promises is for you.Show NotesThe economics of LLMs and DeepSeek R1 (00:00:03)Reviewing recent developments in AI technologies and their implications Discussing the impact of DeepSeek’s R1 model on the AI landscape, NVIDIA The origins of agentic AI (00:07:12)Status quo of AI models to date: Is big tech backing away from promise of generative AI?Agentic AI designed to perceive, reason, act, and learnGovernance and agentic AI (00:13:12)Examining the tension between cost efficiency and performance risks [LangChain State of AI Agents Report]Highlighting governance concerns related to AI agents Issues with agentic AI implementation (00:21:01)Considering the limitations of AI agents and their adoption in the workplace Analyzing real-world experiments with AI agent technologies, like Devin What's next for complex and agentic AI systems (00:29:27)Offering insights on the cautious integration of these systems in business practicesEncouraging a thoughtful approach to leveraging AI capabilities for measurable outcomesWhat did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.
undefined
Jan 7, 2025 • 33min

Contextual integrity and differential privacy: Theory vs. application with Sebastian Benthall

What if privacy could be as dynamic and socially aware as the communities it aims to protect? Sebastian Benthall, a senior research fellow from NYU’s Information Law Institute, shows us how privacy is complex. He uses Helen Nissenbaum’s work with contextual integrity and concepts in differential privacy to explain the complexity of privacy. Our talk explains how privacy is not just about protecting data but also about following social rules in different situations, from healthcare to education. These rules can change privacy regulations in big ways.Show notesIntro: Sebastian Benthall (0:03)Research: Designing Fiduciary Artificial Intelligence (Benthall, Shekman)Integrating Differential Privacy and Contextual Integrity (Benthall, Cummings)Exploring differential privacy and contextual integrity (1:05)Discussion about the origins of each subjectHow are differential privacy and contextual integrity used to enforce each other?Accepted context or legitimate context? (9:33)Does context develop from what society accepts over time?Approaches to determine situational context and legitimacyNext steps in contextual integrity (13:35)Is privacy as we know it ending?Areas where integrated differential privacy and contextual integrity can help (Cummings)Interpretations of differential privacy (14:30)Not a silver bulletNew questions posed from NIST about its applicationPrivacy determined by social norms (20:25)Game theory and its potential for understanding social normsAgents and governance: what will ultimately decide privacy? (25:27)Voluntary disclosures and the biases it can present towards groups that are least concerned with privacyAvoiding self-fulfilling prophecy from data and contextWhat did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.
undefined
Nov 9, 2024 • 28min

Model documentation: Beyond model cards and system cards in AI governance

What if the secret to successful AI governance lies in understanding the evolution of model documentation? In this episode, our hosts challenge the common belief that model cards marked the start of documentation in AI. We explore model documentation practices, from their crucial beginnings in fields like finance to their adaptation in Silicon Valley. Our discussion also highlights the important role of early modelers and statisticians in advocating for a complete approach that includes the entire model development lifecycle.Show NotesModel documentation origins and best practices (1:03)Documenting a model is a comprehensive process that requires giving users and auditors clear understanding: Why was the model built? What data goes into a model? How is the model implemented? What does the model output? Model cards - pros and cons (7:33)Model cards for model reporting, Association for Computing MachineryEvolution from this research to Google's definition to todayHow the market perceives them vs. what they areWhy the analogy “nutrition labels for models” needs a closer lookSystem cards - pros and cons (12:03)To their credit, OpenAI system cards somewhat bridge the gap between proper model documentation and a model card.Contains complex descriptions of evaluation methodologies along with results; extra points for reporting red-teaming resultsRepresents 3rd-party opinions of the social and ethical implications of the release of the modelAutomating model documentation with generative AI (17:17)Finding the balance in automation in a great governance strategyGenerative AI can provide an assist in editing and personal workflowImproving documentation for AI governance (23:11)As model expert, engage from the beginning with writing the bulk of model documentation by hand.The exercise of documenting your models solidifies your understanding of the model's goals, values, and methods for the businessWhat did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.
undefined
Oct 8, 2024 • 40min

New paths in AI: Rethinking LLMs and model risk strategies

Are businesses ready for large language models as a path to AI? In this episode, the hosts reflect on the past year of what has changed and what hasn’t changed in the world of LLMs. Join us as we debunk the latest myths and emphasize the importance of robust risk management in AI integration. The good news is that many decisions about adoption have forced businesses to discuss their future and impact in the face of emerging technology. You won't want to miss this discussion.Intro and news: The veto of California's AI Safety Bill (00:00:03)Can state-specific AI regulations really protect consumers, or do they risk stifling innovation? (Gov. Newsome's response)Veto highlights the critical need for risk-based regulations that don't rely solely on the size and cost of language models Arguments to be made for a cohesive national framework that ensures consistent AI regulation across the United StatesAre businesses ready to embrace large language models, or are they underestimating the challenges? (00:08:35) The myth that acquiring a foundational model is a quick fix for productivity woes The essential role of robust risk management strategies, especially in sensitive sectors handling personal dataReview of model cards, Open AI's system cards, and the importance of thorough testing, validation, and stricter regulations to prevent a false sense of securityTransparency alone is not enough; objective assessments are crucial for genuine progress in AI integrationFrom hallucinations in language models to ethical energy use, we tackle some of the most pressing problems in AI today (00:16:29)Reinforcement learning with annotators and the controversial use of other models for reviewJan LeCun's energy systems and retrieval-augmented generation (RAG) offer intriguing alternatives that could reshape modeling approachesThe ethics of advancing AI technologies, consider the parallels with past monumental achievements and the responsible allocation of resources (00:26:49)There is good news about developments and lessons learned from LLMs; but there is also a long way to go.Our original predictions in episode 2 for LLMs still reigns true: “Reasonable expectations of LLMs: Where truth matters and risk tolerance is low, LLMs will not be a good fit”With increased hype and awareness from LLMs came varying levels of interest in how all model types and their impacts are governed in a business.What did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.
undefined
Sep 4, 2024 • 41min

Complex systems: What data science can learn from astrophysics with Rachel Losacco

Our special guest, astrophysicist Rachel Losacco, explains the intricacies of galaxies, modeling, and the computational methods that unveil their mysteries. She shares stories about how advanced computational resources enable scientists to decode galaxy interactions over millions of years with true-to-life accuracy. Sid and Andrew discuss transferable practices for building resilient modeling systems. Prologue: Why it's important to bring stats back [00:00:03]Announcement from the American Statistical Association (ASA): Data Science Statement Updated to Include “ and AI”  Today's guest: Rachel Losacco [00:02:10]Rachel is an astrophysicist who’s worked with major galaxy formation simulations for many years. She hails from Leiden (Lie-den) University and the University of Florida. As a Senior Data Scientist, she works on modeling road safety.  Defining complex systems through astrophysics [00:02:52]Discussion about origins and adoption of complex systemsDifficulties with complex systems: Nonlinearity, chaos and randomness, collective dynamics and hierarchy, and emergence.Complexities of nonlinear systems [00:08:20]Linear models (Least Squares, GLMs, SVMs) can be incredibly powerful but they cannot model all possible functions (e.g. a decision boundary of concentric circles)Non-linearity and how it exists in the natural worldChaos and randomness [00:11:30]Enter references to Jurassic Park and The Butterfly Effect“In universe simulations, a change to a single parameter can govern if entire galaxy clusters will ever form” - RachelCollective dynamics and hierarchy [00:15:45]Interactions between agents don’t occur globally and often is mediated through effects that only happen on specific sub-scalesAdaptation: components of systems breaking out of linear relationships between inputs and outputs to better serve the function of the greater system   Emergence and complexity [00:23:36]New properties arise from the system that cannot be explained by the base rules governing the systemExamples in astrophysics [00:24:34]These difficulties are parts of solving previously impossible problemsConsider this lecture from IIT Delhi on Complex Systems to get a sense of what is required to study and formalize a complex system and its collective dynamics (https://www.youtube.com/watch?v=yJ39ppgJlf0)Consciousness and reasoning from a new point of view [00:31:45]Non-linearity, hierarchy, feedback loops, and emergence may be ways to study consciousness. The brain is a complex system that a simple set of rules cannot fully define.See: Brain modeling from scratch of C. Elgans What did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.
undefined
Aug 20, 2024 • 34min

Preparing AI for the unexpected: Lessons from recent IT incidents

Can your AI models survive a big disaster? While a recent major IT incident with CrowdStrike wasn't AI related, the magnitude and reaction reminded us that no system no matter how proven is immune to failure. AI modeling systems are no different. Neglecting the best practices of building models can lead to unrecoverable failures. Discover how the three-tiered framework of robustness, resiliency, and anti-fragility can guide your approach to creating AI infrastructures that not only perform reliably under stress but also fail gracefully when the unexpected happens.Show NotesTechnology, incidents, and why basics matter (00:00:03)While the recent Crowdstrike incident wasn't caused by AI, it's impact was a wakeup call for people and processes that support critical systemsAs AI is increasingly being used at both experimental and production levels, we can expect AI incidents are a matter of if, not when. What can you do to prepare?The "7P's": Are you capable of handling the unexpected? (00:09:05)The 7Ps is an adage, dating back to WWII, that aligns with our "do things the hard way" approach to AI governance and modeling systems.Let’s consider the levels of building a performant system: Robustness, Resiliency, and AntifragilityModel robustness (00:10:03)Robustness is a very important but often overlooked component of building modeling systems. We suspect that part of the problem is due to: The Kaggle-driven upbringing of data scientistsAssumed generalizability of modeling systems, when models are optimized to perform well on their training data but do not generalize enough to perform well on unseen data.Model resilience (00:16:10)Resiliency is the ability to absorb adverse stimuli without destruction and return to its pre-event state.In practice, robustness and resiliency, testing, and planning are often easy components to leave out. This is where risks and threats are exposed.See also, Episode 8. Model validation: Robustness and resilienceModels and antifragility (00:25:04)Unlike resiliency, which is the ability to absorb damaging inputs without breaking, antifragility is the ability of a system to improve from challenging stimuli. (i.e. the human body)A key question we need to ask ourselves if we are not actively building our AI systems to be antifragile, why are we using AI systems at all?What did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.
undefined
Jul 30, 2024 • 41min

Exploring the NIST AI Risk Management Framework (RMF) with Patrick Hall

Join us as we chat with Patrick Hall, Principal Scientist at Hallresearch.ai and Assistant Professor at George Washington University. He shares his insights on the current state of AI, its limitations, and the potential risks associated with it. The conversation also touched on the importance of responsible AI, the role of the National Institute of Standards and Technology (NIST) AI Risk Management Framework (RMF) in adoption, and the implications of using generative AI in decision-making.Show notesGovernance, model explainability, and high-risk applications 00:00:03 Intro to PatrickHis latest book: Machine Learning for High-Risk Applications: Approaches to Responsible AI (2023)The benefits of NIST AI Risk Management Framework 00:04:01 Does not have a profit motive, which avoids the potential for conflicts of interest when providing guidance on responsible AI. Solicits, adjudicates, and incorporates feedback from the public and other stakeholders.NIST is not law, however it's recommendations set companies up for outcome-based reviews by regulators.Accountability challenges in "blame-free" cultures 00:10:24 Cites these cultures have the hardest time with the framework's recommendationsPractices like documentation and fair model reviews need accountability and objectivityIf everyone's responsible, no one's responsible.The value of explainable models vs black-box models 00:15:00 Concerns about replacing explainable models with LLMs for LLM's sake Why generative AI is bad for decision-making AI and its impact on students 00:21:49 Students are more indicative of where the hype and market is todayTeaching them how to work through the best model for the best job despite the hypeAI incidents and contextual failures 00:26:17 AI Incident Database AI, as it currently stands, is a memorizing and calculating technology. It lacks the ability to incorporate real-world context.McDonald's AI Drive-Thru debacle is a warning to us allGenerative AI and homogenization problems 00:34:30Recommended resources from Patrick:Ed Zitron “Better Offline” NIST ARIA AI Safety Is a Narrative ProblemWhat did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.
undefined
Jul 3, 2024 • 28min

Data lineage and AI: Ensuring quality and compliance with Matt Barlin

Ready to uncover the secrets of modern systems engineering and the future of AI? Join us for an enlightening conversation with Matt Barlin, the Chief Science Officer of Valence. Matt's extensive background in systems engineering and data lineage sets the stage for a fascinating discussion. He sheds light on the historical evolution of the field, the critical role of documentation, and the early detection of defects in complex systems. This episode promises to expand your understanding of model-based systems and data issues, offering valuable insights that only an expert of Matt's caliber can provide.In the heart of our episode, we dive into the fundamentals and transformative benefits of data lineage in AI. Matt draws intriguing parallels between data lineage and the engineering life cycle, stressing the importance of tracking data origins, access rights, and verification processes. Discover how decentralized identifiers are paving the way for individuals to control and monetize their own data. With the phasing out of third-party cookies and the challenges of human-generated training data shortages, we explore how systems like retrieval-augmented generation (RAG) and compliance regulations like the EU AI Act are shaping the landscape of AI data quality and compliance. Don’t miss this thought-provoking episode that promises to keep you at the forefront of responsible AI.What did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.
undefined
Jun 4, 2024 • 28min

Differential privacy: Balancing data privacy and utility in AI

Explore the basics of differential privacy and its critical role in protecting individual anonymity. The hosts explain the latest guidelines and best practices in applying differential privacy to data for models such as AI. Learn how this method also makes sure that personal data remains confidential, even when datasets are analyzed or hacked.Show NotesIntro and AI news (00:00) Google AI search tells users to glue pizza and eat rocks Gary Marcus on break? (Maybe and X only break)What is differential privacy? (06:34)Differential privacy is a process for sensitive data anonymization that offers each individual in a dataset the same privacy they would experience if they were removed from the dataset entirely.NIST’s recent paper SP 800-226 IPD: “Any privacy harms that result form a differentially private analysis could have happened if you had not contributed your data”.There are two main types of differential privacy: global (NIST calls it Central) and localWhy should people care about differential privacy? (11:30)Interest has been increasing for organizations to intentionally and systematically prioritize the privacy and safety of user dataSpeed up deployments of AI systems for enterprise customers since connections to raw data do not need to be establishedIncrease data security for customers that utilize sensitive data in their modeling systemsMinimize the risk of sensitive data exposure for your data privileges - i.e. Don’t be THAT organizationGuidelines and resources for applied differential privacyGuidelines for Evaluating Differential Privacy Guarantees: NIST De-IdentificationPractical examples of applied differential privacy (15:58)Continuous Features - cite: Dwork, McSherry, Nissim, and Smith’s 2006 seminal paper "Calibrating Noise to Sensitivity in Private Data Analysis”[2], introduces a concept called ε-differential privacyCategorical Features - cite: Warner (1965) created a randomized response technique in his paper titled: “Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias” Summary and key takeaways (23:59)Differential privacy is going to be a part of how many of us need to manage data privacyData providers can’t provide us with anonymized data for analysis or when anonymization isn’t enough for our privacy needsHopeful that cohort targeting takes over for individual targetingRemember: Differential privacy does not prevent bias!What did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.
undefined
May 7, 2024 • 46min

Responsible AI: Does it help or hurt innovation? With Anthony Habayeb

Artificial Intelligence (AI) stands at a unique intersection of technology, ethics, and regulation. The complexities of responsible AI are brought into sharp focus in this episode featuring Anthony Habayeb, CEO and co-founder of Monitaur,  As responsible AI is scrutinized for its role in profitability and innovation, Anthony and our hosts discuss the imperatives of safe and unbiased modeling systems, the role of regulations, and the importance of ethics in shaping AI.Show notesPrologue: Why responsible AI? Why now? (00:00:00)Deviating from our normal topics about modeling best practicesContext about where regulation plays a role in industries besides big techCan we learn from other industries about the role of "responsibility" in products? Special guest, Anthony Habayeb (00:02:59)Introductions and start of the discussionOf all the companies you could build around AI, why governance?Is responsible AI the right phrase? (00:11:20)Should we even call good modeling and business practices "responsible AI"?Is having responsible AI a “want to have?” or a “need to have?”Importance of AI regulation and responsibility (00:14:49)People in the AI and regulation worlds have started pushing back on Responsible AI.Do regulations impede freedom?Discussing the big picture of responsibility and governance: Explainability, repeatability, records, and auditWhat about bias and fairness? (00:22:40)You can have fair models that operate with biasBias in practice identifies inequities that models have learnedFairness is correcting for societal biases to level the playing field for safer business and modeling practices to prevail.Responsible deployment and business management (00:35:10)Discussion about what organizations get right about responsible AIAnd what organizations can get completely wrong if they aren't careful.Embracing responsible AI practices (00:41:15)Getting your teams, companies, and individuals involved in the movement towards building AI responsiblyWhat did you think? Let us know.Do you have a question or a discussion topic for the AI Fundamentalists? Connect with them to comment on your favorite topics: LinkedIn - Episode summaries, shares of cited articles, and more. YouTube - Was it something that we said? Good. Share your favorite quotes. Visit our page - see past episodes and submit your feedback! It continues to inspire future episodes.

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app