

TalkRL: The Reinforcement Learning Podcast
Robin Ranjit Singh Chauhan
TalkRL podcast is All Reinforcement Learning, All the Time.
In-depth interviews with brilliant people at the forefront of RL research and practice.
Guests from places like MILA, OpenAI, MIT, DeepMind, Berkeley, Amii, Oxford, Google Research, Brown, Waymo, Caltech, and Vector Institute.
Hosted by Robin Ranjit Singh Chauhan.
In-depth interviews with brilliant people at the forefront of RL research and practice.
Guests from places like MILA, OpenAI, MIT, DeepMind, Berkeley, Amii, Oxford, Google Research, Brown, Waymo, Caltech, and Vector Institute.
Hosted by Robin Ranjit Singh Chauhan.
Episodes
Mentioned books

5 snips
Apr 12, 2023 • 45min
Danijar Hafner 2
Danijar Hafner on the DreamerV3 agent and world models, the Director agent and heirarchical RL, realtime RL on robots with DayDreamer, and his framework for unsupervised agent design! Danijar Hafner is a PhD candidate at the University of Toronto with Jimmy Ba, a visiting student at UC Berkeley with Pieter Abbeel, and an intern at DeepMind. He has been our guest before back on episode 11. Featured References Mastering Diverse Domains through World Models [ blog ] DreaverV3 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, Timothy Lillicrap DayDreamer: World Models for Physical Robot Learning [ blog ] Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, Pieter Abbeel Deep Hierarchical Planning from Pixels [ blog ] Danijar Hafner, Kuang-Huei Lee, Ian Fischer, Pieter Abbeel Action and Perception as Divergence Minimization [ blog ] Danijar Hafner, Pedro A. Ortega, Jimmy Ba, Thomas Parr, Karl Friston, Nicolas Heess Additional References Mastering Atari with Discrete World Models [ blog ] DreaverV2 ; Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, Jimmy Ba Dream to Control: Learning Behaviors by Latent Imagination [ blog ] Dreamer ; Danijar Hafner, Timothy Lillicrap, Jimmy Ba, Mohammad Norouzi Planning to Explore via Self-Supervised World Models ; Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, Deepak Pathak

Mar 27, 2023 • 1h 11min
Jeff Clune
AI Generating Algos, Learning to play Minecraft with Video PreTraining (VPT), Go-Explore for hard exploration, POET and Open Endedness, AI-GAs and ChatGPT, AGI predictions, and lots more! Professor Jeff Clune is Associate Professor of Computer Science at University of British Columbia, a Canada CIFAR AI Chair and Faculty Member at Vector Institute, and Senior Research Advisor at DeepMind. Featured References Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online Videos [ Blog Post ] Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon Houghton, Raul Sampedro, Jeff Clune Robots that can adapt like animals Antoine Cully, Jeff Clune, Danesh Tarapore, Jean-Baptiste Mouret Illuminating search spaces by mapping elites Jean-Baptiste Mouret, Jeff Clune Enhanced POET: Open-Ended Reinforcement Learning through Unbounded Invention of Learning Challenges and their Solutions Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeff Clune, Kenneth O. Stanley Paired Open-Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their Solutions Rui Wang, Joel Lehman, Jeff Clune, Kenneth O. Stanley First return, then explore Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, Jeff Clune

Mar 14, 2023 • 46min
Natasha Jaques 2
Hear about why OpenAI cites her work in RLHF and dialog models, approaches to rewards in RLHF, ChatGPT, Industry vs Academia, PsiPhi-Learning, AGI and more! Dr Natasha Jaques is a Senior Research Scientist at Google Brain. Featured References Way Off-Policy Batch Deep Reinforcement Learning of Implicit Human Preferences in Dialog Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah Jones, Shixiang Gu, Rosalind Picard Sequence Tutor: Conservative Fine-Tuning of Sequence Generation Models with KL-control Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E. Turner, Douglas Eck PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning Angelos Filos, Clare Lyle, Yarin Gal, Sergey Levine, Natasha Jaques, Gregory Farquhar Basis for Intentions: Efficient Inverse Reinforcement Learning using Past Experience Marwa Abdulhai, Natasha Jaques, Sergey Levine Additional References Fine-Tuning Language Models from Human Preferences, Daniel M. Ziegler et al 2019 Learning to summarize from human feedback, Nisan Stiennon et al 2020 Training language models to follow instructions with human feedback, Long Ouyang et al 2022

Mar 7, 2023 • 1h 7min
Jacob Beck and Risto Vuorio
Jacob Beck and Risto Vuorio on their recent Survey of Meta-Reinforcement Learning. Jacob and Risto are Ph.D. students at Whiteson Research Lab at University of Oxford. Featured Reference A Survey of Meta-Reinforcement LearningJacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, Shimon Whiteson Additional References VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning, Luisa Zintgraf et al Mastering Diverse Domains through World Models (Dreamerv3), Hafner et al Unsupervised Meta-Learning for Reinforcement Learning (MAML), Gupta et al Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices (DREAM), Liu et al RL2: Fast Reinforcement Learning via Slow Reinforcement Learning, Duan et al Learning to reinforcement learn, Wang et al

5 snips
Oct 18, 2022 • 44min
John Schulman
John Schulman is a cofounder of OpenAI, and currently a researcher and engineer at OpenAI.Featured ReferencesWebGPT: Browser-assisted question-answering with human feedbackReiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, John SchulmanTraining language models to follow instructions with human feedbackLong Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, Ryan LoweAdditional ReferencesOur approach to alignment research, OpenAI 2022Training Verifiers to Solve Math Word Problems, Cobbe et al 2021UC Berkeley Deep RL Bootcamp Lecture 6: Nuts and Bolts of Deep RL Experimentation, John Schulman 2017Proximal Policy Optimization Algorithms, Schulman 2017Optimizing Expectations: From Deep Reinforcement Learning to Stochastic Computation Graphs, Schulman 2016

Aug 19, 2022 • 35min
Sven Mika
Sven Mika is the Reinforcement Learning Team Lead at Anyscale, and lead committer of RLlib. He holds a PhD in biomathematics, bioinformatics, and computational biology from Witten/Herdecke University. Featured ReferencesRLlib Documentation: RLlib: Industry-Grade Reinforcement LearningRay: DocumentationRLlib: Abstractions for Distributed Reinforcement LearningEric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E. Gonzalez, Michael I. Jordan, Ion StoicaEpisode sponsor: AnyscaleRay Summit 2022 is coming to San Francisco on August 23-24.Hear how teams at Dow, Verizon, Riot Games, and more are solving their RL challenges with Ray's RLlib.Register at raysummit.org and use code RAYSUMMIT22RL for a further 25% off the already reduced prices.

4 snips
Aug 16, 2022 • 1h 3min
Karol Hausman and Fei Xia
Karol Hausman is a Senior Research Scientist at Google Brain and an Adjunct Professor at Stanford working on robotics and machine learning. Karol is interested in enabling robots to acquire general-purpose skills with minimal supervision in real-world environments. Fei Xia is a Research Scientist with Google Research. Fei Xia is mostly interested in robot learning in complex and unstructured environments. Previously he has been approaching this problem by learning in realistic and scalable simulation environments (GibsonEnv, iGibson). Most recently, he has been exploring using foundation models for those challenges.Featured ReferencesDo As I Can, Not As I Say: Grounding Language in Robotic Affordances [ website ] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan YanInner Monologue: Embodied Reasoning through Planning with Language ModelsWenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda Luu, Sergey Levine, Karol Hausman, Brian IchterAdditional ReferencesLarge-scale simulation for embodied perception and robot learning, Xia 2021QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation, Kalashnikov et al 2018MT-Opt: Continuous Multi-Task Robotic Reinforcement Learning at Scale, Kalashnikov et al 2021ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for Mobile Manipulation, Xia et al 2020Actionable Models: Unsupervised Offline Reinforcement Learning of Robotic Skills, Chebotar et al 2021 Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language, Zeng et al 2022Episode sponsor: AnyscaleRay Summit 2022 is coming to San Francisco on August 23-24.Hear how teams at Dow, Verizon, Riot Games, and more are solving their RL challenges with Ray's RLlib.Register at raysummit.org and use code RAYSUMMIT22RL for a further 25% off the already reduced prices.

Aug 1, 2022 • 1h 8min
Sai Krishna Gottipati
Saikrishna Gottipati is an RL Researcher at AI Redefined, working on RL, MARL, human in the loop learning.Featured ReferencesCogment: Open Source Framework For Distributed Multi-actor Training, Deployment & OperationsAI Redefined, Sai Krishna Gottipati, Sagar Kurandwad, Clodéric Mars, Gregory Szriftgiser, François ChabotDo As You Teach: A Multi-Teacher Approach to Self-Play in Deep Reinforcement LearningCurrently under reviewLearning to navigate the synthetically accessible chemical space using reinforcement learningSai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu, Karam J. Thomas, Simon Blackburn, Connor W. Coley, Jian Tang, Sarath Chandar, Yoshua BengioAdditional ReferencesAsymmetric self-play for automatic goal discovery in robotic manipulation, 2021 OpenAI et al Continuous Coordination As a Realistic Scenario for Lifelong Learning, 2021 Nekoei et alEpisode sponsor: AnyscaleRay Summit 2022 is coming to San Francisco on August 23-24.Hear how teams at Dow, Verizon, Riot Games, and more are solving their RL challenges with Ray's RLlib.Register at raysummit.org and use code RAYSUMMIT22RL for a further 25% off the already reduced prices.

May 9, 2022 • 59min
Aravind Srinivas 2
Aravind Srinivas is back! He is now a research Scientist at OpenAI.Featured ReferencesDecision Transformer: Reinforcement Learning via Sequence ModelingLili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor MordatchVideoGPT: Video Generation using VQ-VAE and TransformersWilson Yan, Yunzhi Zhang, Pieter Abbeel, Aravind Srinivas

Apr 12, 2022 • 1h 37min
Rohin Shah
Dr. Rohin Shah is a Research Scientist at DeepMind, and the editor and main contributor of the Alignment Newsletter.Featured ReferencesThe MineRL BASALT Competition on Learning from Human FeedbackRohin Shah, Cody Wild, Steven H. Wang, Neel Alex, Brandon Houghton, William Guss, Sharada Mohanty, Anssi Kanervisto, Stephanie Milani, Nicholay Topin, Pieter Abbeel, Stuart Russell, Anca DraganPreferences Implicit in the State of the WorldRohin Shah, Dmitrii Krasheninnikov, Jordan Alexander, Pieter Abbeel, Anca DraganBenefits of Assistance over Reward Learning Rohin Shah, Pedro Freire, Neel Alex, Rachel Freedman, Dmitrii Krasheninnikov, Lawrence Chan, Michael D Dennis, Pieter Abbeel, Anca Dragan, Stuart RussellOn the Utility of Learning about Humans for Human-AI CoordinationMicah Carroll, Rohin Shah, Mark K. Ho, Thomas L. Griffiths, Sanjit A. Seshia, Pieter Abbeel, Anca DraganEvaluating the Robustness of Collaborative AgentsPaul Knott, Micah Carroll, Sam Devlin, Kamil Ciosek, Katja Hofmann, A. D. Dragan, Rohin ShahAdditional ReferencesAGI Safety Fundamentals, EA Cambridge