
Data Skeptic
The Data Skeptic Podcast features interviews and discussion of topics related to data science, statistics, machine learning, artificial intelligence and the like, all from the perspective of applying critical thinking and the scientific method to evaluate the veracity of claims and efficacy of approaches.
Latest episodes

Feb 6, 2015 • 18min
[MINI] The Chi-Squared Test
The Chi-Squared test is a methodology for hypothesis testing. When one has categorical data, in the form of frequency counts or observations (e.g. Vegetarian, Pescetarian, and Omnivore), split into two or more categories (e.g. Male, Female), a question may arise such as "Are women more likely than men to be vegetarian?" or put more accurately, "Is any observed difference in the frequency with which women report being vegetarian differ in a statistically significant way from the frequency men report that?"

Jan 30, 2015 • 30min
Mapping Reddit Topics with Randy Olson
My quest this week is noteworthy a.i. researcher Randy Olson who joins me to share his work creating the Reddit World Map - a visualization that illuminates clusters in the reddit community based on user behavior. Randy's blog post on created the reddit world map is well complimented by a more detailed write up titled Navigating the massive world of reddit: using backbone networks to map user interests in social media. Last but not least, an interactive version of the results (which leverages Gephi) can be found here. For a benevolent recommendation, Randy suggetss people check out Seaborn - a python library for statistical data visualization. For a self serving recommendation, Randy recommends listeners visit the Data is beautiful subreddit where he's a moderator.

8 snips
Jan 23, 2015 • 13min
[MINI] Partially Observable State Spaces
Exploring partially observable state spaces and their implications in chess, poker, and animal behavior. Understanding the concept of state models and their applications in analyzing dynamic systems. Tailoring content based on website visitors' behavior and needs. Exploring how probability distributions and Bayesian updating are used to represent uncertain states in data science.

Jan 16, 2015 • 28min
Easily Fooling Deep Neural Networks
My guest this week is Anh Nguyen, a PhD student at the University of Wyoming working in the Evolving AI lab. The episode discusses the paper Deep Neural Networks are Easily Fooled [pdf] by Anh Nguyen, Jason Yosinski, and Jeff Clune. It describes a process for creating images that a trained deep neural network will mis-classify. If you have a deep neural network that has been trained to recognize certain types of objects in images, these "fooling" images can be constructed in a way which the network will mis-classify them. To a human observer, these fooling images often have no resemblance whatsoever to the assigned label. Previous work had shown that some images which appear to be unrecognizable white noise images to us can fool a deep neural network. This paper extends the result showing abstract images of shapes and colors, many of which have form (just not the one the network thinks) can also trick the network.

Jan 9, 2015 • 11min
[MINI] Data Provenance
This episode introduces a high level discussion on the topic of Data Provenance, with more MINI episodes to follow to get into specific topics. Thanks to listener Sara L who wrote in to point out the Data Skeptic Podcast has focused alot about using data to be skeptical, but not necessarily being skeptical of data. Data Provenance is the concept of knowing the full origin of your dataset. Where did it come from? Who collected it? How as it collected? Does it combine independent sources or one singular source? What are the error bounds on the way it was measured? These are just some of the questions one should ask to understand their data. After all, if the antecedent of an argument is built on dubious grounds, the consequent of the argument is equally dubious. For a more technical discussion than what we get into in this mini epiosode, I recommend A Survey of Data Provenance Techniques by authors Simmhan, Plale, and Gannon.

Jan 3, 2015 • 31min
Doubtful News, Geology, Investigating Paranormal Groups, and Thinking Scientifically with Sharon Hill
I had the change to speak with well known Sharon Hill (@idoubtit) for the first episode of 2015. We discuss a number of interesting topics including the contributions Doubtful News makes to getting scientific and skeptical information ranked highly in search results, sink holes, why earthquakes are hard to predict, and data collection about paranormal groups via the internet.

Dec 26, 2014 • 10min
[MINI] Belief in Santa
In this quick holiday episode, we touch on how one would approach modeling the statistical distribution over the probability of belief in Santa Claus given age.

Dec 19, 2014 • 24min
Economic Modeling and Prediction, Charitable Giving, and a Follow Up with Peter Backus
Economist Peter Backus joins me in this episode to discuss a few interesting topics. You may recall Linhda and I previously discussed his paper "The Girlfriend Equation" on a recent mini-episode. We start by touching base on this fun paper and get a follow up on where Peter stands years after writing w.r.t. a successful romantic union. Additionally, we delve in to some fascinating economics topics. We touch on questions of the role models, for better or for worse, played a role in the ~2008 economic crash, statistics in economics and the difficulty of measurement, and some insightful discussion about the economics charities. Peter encourages listeners to be open to giving money to charities that are good at fundraising, and his arguement is a (for me) suprisingly insightful logic. Lastly, we have a teaser of some of Peter's upcoming work using unconventional data sources. For his benevolent recommendation, Peter recommended the book The Conquest of Happiness by Bertrand Russell, and for his self-serving recommendation, follow Peter on twitter at @Awesomnomics.

Dec 12, 2014 • 18min
[MINI] The Battle of the Sexes
Love and Data is the continued theme in this mini-episode as we discuss the game theory example of The Battle of the Sexes. In this textbook example, a couple must strategize about how to spend their Friday night. One partner prefers football games while the other partner prefers to attend the opera. Yet, each person would rather be at their non-preferred location so long as they are still with their spouse. So where should they decide to go?

Dec 5, 2014 • 59min
The Science of Online Data at Plenty of Fish with Thomas Levi
Can algorithms help you find love? Many happy couples successfully brought together via online dating websites show us that data science can help you find love. I'm joined this week by Thomas Levi, Senior Data Scientist at Plenty of Fish, to discuss some of his work which helps people find one another as efficiently as possible. Matchmaking is a truly non-trivial problem, and one that's dynamically changing all the time as new users join and leave the "pool of fish". This episode explores the aspects of what makes this a tough problem and some of the ways POF has been successfully using data science to solve it, and continues to try to innovate with new techniques like interest matching. For his benevolent references, Thomas suggests readers check out All of Statistics as well as the caret library for R. And for a self serving recommendation, follow him on twitter (@tslevi) or connect with Thomas Levi on Linkedin.