The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) cover image

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

Latest episodes

undefined
May 22, 2023 • 28min

Language Modeling With State Space Models with Dan Fu - #630

Today we’re joined by Dan Fu, a PhD student at Stanford University. In our conversation with Dan, we discuss the limitations of state space models in language modeling and the search for alternative building blocks that can help increase context length without being computationally infeasible. Dan walks us through the H3 architecture and Flash Attention technique, which can reduce the memory footprint of a model and make it feasible to fine-tune. We also explore his work on improving language models using synthetic languages, the issue of long sequence length affecting both training and inference in models, and the hope for finding something sub-quadratic that can perform language processing more effectively than the brute force approach of attention.The complete show notes for this episode can be found at https://twimlai.com/go/630
undefined
May 15, 2023 • 43min

Building Maps and Spatial Awareness in Blind AI Agents with Dhruv Batra - #629

Today we continue our coverage of ICLR 2023 joined by Dhruv Batra, an associate professor at Georgia Tech and research director of the Fundamental AI Research (FAIR) team at META. In our conversation, we discuss Dhruv’s work on the paper Emergence of Maps in the Memories of Blind Navigation Agents, which won an Outstanding Paper Award at the event. We explore navigation with multilayer LSTM and the question of whether embodiment is necessary for intelligence. We delve into the Embodiment Hypothesis and the progress being made in language models and caution on the responsible use of these models. We also discuss the history of AI and the importance of using the right data sets in training. The conversation explores the different meanings of "maps" across AI and cognitive science fields, Dhruv’s experience in navigating mapless systems, and the early discovery stages of memory representation and neural mechanisms.The complete show notes for this episode can be found at https://twimlai.com/go/629
undefined
May 8, 2023 • 41min

AI Agents and Data Integration with GPT and LLaMa with Jerry Liu - #628

Today we’re joined by Jerry Liu, co-founder and CEO of Llama Index. In our conversation with Jerry, we explore the creation of Llama Index, a centralized interface to connect your external data with the latest large language models. We discuss the challenges of adding private data to language models and how Llama Index connects the two for better decision-making. We discuss the role of agents in automation, the evolution of the agent abstraction space, and the difficulties of optimizing queries over large amounts of complex data. We also discuss a range of topics from combining summarization and semantic search, to automating reasoning, to improving language model results by exploiting relationships between nodes in data. The complete show notes for this episode can be found at twimlai.com/go/628.
undefined
May 1, 2023 • 33min

Hyperparameter Optimization through Neural Network Partitioning with Christos Louizos - #627

Today we kick off our coverage of the 2023 ICLR conference joined by Christos Louizos, an ML researcher at Qualcomm Technologies. In our conversation with Christos, we explore his paper Hyperparameter Optimization through Neural Network Partitioning and a few of his colleague's works from the conference. We discuss methods for speeding up attention mechanisms in transformers, scheduling operations for computation graphs, estimating channels in indoor environments, and adapting to distribution shifts in test time with neural network modules. We also talk through the benefits and limitations of federated learning, exploring sparse models, optimizing communication between servers and devices, and much more. The complete show notes for this episode can be found at https://twimlai.com/go/627.
undefined
Apr 24, 2023 • 38min

Are LLMs Overhyped or Underappreciated? with Marti Hearst - #626

Today we’re joined by Marti Hearst, Professor at UC Berkeley. In our conversation with Marti, we explore the intricacies of AI language models and their usefulness in improving efficiency but also their potential for spreading misinformation. Marti expresses skepticism about whether these models truly have cognition compared to the nuance of the human brain. We discuss the intersection of language and visualization and the need for specialized research to ensure safety and appropriateness for specific uses. We also delve into the latest tools and algorithms such as Copilot and Chat GPT, which enhance programming and help in identifying comparisons, respectively. Finally, we discuss Marti’s long research history in search and her breakthrough in developing a standard interaction that allows for finding items on websites and library catalogs.The complete show notes for this episode can be found at https://twimlai.com/go/626.
undefined
Apr 17, 2023 • 60min

Are Large Language Models a Path to AGI? with Ben Goertzel - #625

Today we’re joined by Ben Goertzel, CEO of SingularityNET. In our conversation with Ben, we explore all things AGI, including the potential scenarios that could arise with the advent of AGI and his preference for a decentralized rollout comparable to the internet or Linux. Ben shares his research in bridging neural nets, symbolic logic engines, and evolutionary programming engines to develop a common mathematical framework for AI paradigms. We also discuss the limitations of Large Language Models and the potential of hybridizing LLMs with other AGI approaches. Additionally, we chat about their work using LLMs for music generation and the limitations of formalizing creativity. Finally, Ben discusses his team's work with the OpenCog Hyperon framework and Simuli to achieve AGI, and the potential implications of their research in the future.The complete show notes for this episode can be found at https://twimlai.com/go/625
undefined
Apr 11, 2023 • 34min

Open Source Generative AI at Hugging Face with Jeff Boudier - #624

Today we’re joined by Jeff Boudier, head of product at Hugging Face 🤗. In our conversation with Jeff, we explore the current landscape of open-source machine learning tools and models, the recent shift towards consumer-focused releases, and the importance of making ML tools accessible. We also discuss the growth of the Hugging Face Hub, which currently hosts over 150k models, and how formalizing their collaboration with AWS will help drive the adoption of open-source models in the enterprise.  The complete show notes for this episode can be found at twimlai.com/go/624
undefined
Apr 3, 2023 • 39min

Generative AI at the Edge with Vinesh Sukumar - #623

Today we’re joined by Vinesh Sukumar, a senior director and head of AI/ML product management at Qualcomm Technologies. In our conversation with Vinesh, we explore how mobile and automotive devices have different requirements for AI models and how their AI stack helps developers create complex models on both platforms. We also discuss the growing interest in text-based input and the shift towards transformers, generative content, and recommendation engines. Additionally, we explore the challenges and opportunities for ML Ops investments on the edge, including the use of synthetic data and evolving models based on user data. Finally, we delve into the latest advancements in large language models, including Prometheus-style models and GPT-4.The complete show notes for this episode can be found at twimlai.com/go/623.
undefined
Mar 27, 2023 • 49min

Runway Gen-2: Generative AI for Video Creation with Anastasis Germanidis - #622

Today we’re joined by Anastasis Germanidis, Co-Founder and CTO of RunwayML. Amongst all the product and model releases over the past few months, Runway threw its hat into the ring with Gen-1, a model that can take still images or video and transform them into completely stylized videos. They followed that up just a few weeks later with the release of Gen-2, a multimodal model that can produce a video from text prompts. We had the pleasure of chatting with Anastasis about both models, exploring the challenges of generating video, the importance of alignment in model deployment, the potential use of RLHF, the deployment of models as APIs, and much more!The complete show notes for this episode can be found at twimlai.com/go/622.
undefined
Mar 20, 2023 • 51min

Watermarking Large Language Models to Fight Plagiarism with Tom Goldstein - 621

Today we’re joined by Tom Goldstein, an associate professor at the University of Maryland. Tom’s research sits at the intersection of ML and optimization and has previously been featured in the New Yorker for his work on invisibility cloaks, clothing that can evade object detection. In our conversation, we focus on his more recent research on watermarking LLM output. We explore the motivations behind adding these watermarks, how they work, and different ways a watermark could be deployed, as well as political and economic incentive structures around the adoption of watermarking and future directions for that line of work. We also discuss Tom’s research into data leakage, particularly in stable diffusion models, work that is analogous to recent guest Nicholas Carlini’s research into LLM data extraction. 

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode