

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)
Sam Charrington
Machine learning and artificial intelligence are dramatically changing the way businesses operate and people live. The TWIML AI Podcast brings the top minds and ideas from the world of ML and AI to a broad and influential community of ML/AI researchers, data scientists, engineers and tech-savvy business and IT leaders. Hosted by Sam Charrington, a sought after industry analyst, speaker, commentator and thought leader. Technologies covered include machine learning, artificial intelligence, deep learning, natural language processing, neural networks, analytics, computer science, data science and more.
Episodes
Mentioned books

Jul 31, 2017 • 46min
Deep Learning for Warehouse Operations with Calvin Seward - TWiML Talk #38
This week, I’m happy to bring you my interview with Calvin Seward, a research scientist with Berlin, Germany based Zalando. While our American listeners might not know the name Zalando, they’re one of the largest e-commerce companies in Europe with a focus on fashion and shoes. Calvin is a research scientist there, while also pursuing his doctorate studies at Johannes Kepler University in Linz, Austria. Our discussion, which continues our Industrial AI series, focuses on how Calvin’s team tackled an interesting warehouse optimization problem using deep learning. Calvin also gives his thoughts on the distinction between AI and ML, and the four P’s that he focuses on: Prestige, Products, Paper, and Patents. The notes for this show can be found at https://twimlai.com/talk/38.

Jul 24, 2017 • 46min
Deep Robotic Learning with Sergey Levine - TWiML Talk #37
This week we continue our Industrial AI series with Sergey Levine, an Assistant Professor at UC Berkeley whose research focus is Deep Robotic Learning. Sergey is part of the same research team as a couple of our previous guests in this series, Chelsea Finn and Pieter Abbeel, and if the response we’ve seen to those shows is any indication, you’re going to love this episode! Sergey’s research interests, and our discussion, focus in on include how robotic learning techniques can be used to allow machines to acquire autonomously acquire complex behavioral skills. We really dig into some of the details of how this is done and I found that our conversation filled in a lot of gaps for me from the interviews with Pieter and Chelsea. By the way, this is definitely a nerd alert episode! Notes for this show can be found at twimlai.com/talk/37

Jul 17, 2017 • 53min
Smart Buildings & IoT with Yodit Stanton - TWiML Talk #36
After a brief hiatus, the Industrial AI Series is making its triumphant return! Our guest this week is Yodit Stanton, a self-described Data Nerd, and the Founder & CEO of Opensensors.io. OpenSensors.io is a real-time data exchange for IoT, that enables anyone to publish and subscribe to real time open data in order to build higher order smart systems and better understand the world around them. Our discussion focuses on Smart Buildings and how they’re enabled by IoT and machine learning techniques. The notes for this show can be found at twimlai.com/talk/36

Jul 5, 2017 • 38min
Intel Nervana Update + Productizing AI Research with Naveen Rao And Hanlin Tang - TWiML Talk #31
I talked about Intel’s acquisition of Nervana Systems on the podcast when it happened almost a year ago, so I was super excited to have an opportunity to sit down with Nervana co-founder Naveen Rao, who now leads Intel’s newly formed AI Products Group, for the first show in our O'Reilly AI series. We talked about how Intel plans to extend its leadership position in general purpose compute into the AI realm by delivering silicon designed specifically for AI, end-to-end solutions including the cloud, enterprise data center, and the edge; and tools that let customers quickly productize and scale AI-based solutions. I also spoke with Hanlin Tang, an algorithms engineer at Intel’s AIPG, about two tools announced at the conference: version 2.0 of Intel Nervana’s deep learning framework Neon and Nervana Graph, a new toolset for expressing and running deep learning applications as framework and hardware-independent computational graphs. Nervana Graph in particular sounds like a very interesting project, not to mention a smart move for Intel, and I’d encourage folks to take a look at their Github repo. The show notes for this page can be found at https://twimlai.com/talk/31

Jul 5, 2017 • 33min
Enhancing Customer Experiences With Emotional AI with Rana El Kaliouby - TWiML Talk #35
My guest for this show is Rana el Kaliouby. Rana is co-founder and CEO of Affectiva. Affectiva, as Rana puts it, "is on a mission to humanize technology by bringing in artificial emotional intelligence". If you liked my conversation about Emotional AI with Pascale Fung from last year’s O’Reilly AI conference, you’re going to love this one. My conversation with Rana kind of picks up where the previous one left off, with a focus on how her company is bringing Artificial Emotional Intelligence services to market. Rana and her team have developed a machine learning / computer vision platform that can use the camera on any device to read your facial expressions in real time, then maps it to an emotional state. Using data science to mine the world’s largest emotion repository, Affectiva has collected over 5.5 million pieces of emotional expression data to date, from laptop, driving, cellular interactions. Understanding the importance of personal privacy, Rana and her Co-Founder Rosalind Wright Picard have vowed to shy away from partnerships that would subject consumers to unknowing surveillance, a commendable effort. The notes for this show can be found at https://twimlai.com/talk/35

Jul 5, 2017 • 43min
The Power Of Probabilistic Programming with Ben Vigoda - TWiML Talk #33
My guest for this third episode in the O'Reilly AI series is Ben Vigoda. Ben is the founder and CEO of Gamalon, a DARPA-funded startup working on Bayesian Program Synthesis. We dive into what exactly this means and how it enables what Ben calls idea learning in the show. Gamalon's first application structures unstructured data — input a paragraph or phrase of unstructured text and output a structured spreadsheet/database row or API call. This can be applicable to a wide range of data challenges, including enterprise product and customer information, AI or digital assistant, and many others. Before Gamalon, Ben was co-founder and CEO of Lyric Semiconductor, Inc., which created the first microprocessor architectures dedicated for statistical machine learning. The company was based on his PhD thesis at MIT and acquired by Analog Devices. In today’s talk we are discussing probabilistic programming, his new approach to deep learning, posterior distribution, and the difference between sampling methods and variational methods and how solvers work in the system. Nerd alert: We go pretty deep in this discussion. The notes for this show can be found at https://twimlai.com/talk/33

Jul 5, 2017 • 46min
Expressive AI - Generated Music With Google's Performance RNN - Doug Eck - TWiML Talk #32
My guest for this second show in our O’Reilly AI series is Doug Eck of Google Brain. Doug did a keynote at the O’Reilly conference on Magenta, Google’s project for melding machine learning and the arts. Magenta’s goal is to produce open-source tools and models that help people in their personal creative processes. Doug’s research starts with using so-called “generative” machine learning models to create engaging media. Additionally, he is working on how to bring other aspects of the creative process into play. We talk about the newly announced Performance RNN project, which uses neural networks to create expressive, AI-generated music. We also touch on QuickDraw, a project by Google AI Experiments, in which users as Doug describes it, “play Pictionary” with a visual classifier. We dig into what he foresees as possibilities for Magenta, machine learning models eventually developing storylines, generative models for media and creative coding. The notes for this episode can be found at https://twimlai.com/talk/32.

Jul 5, 2017 • 53min
Video Object Detection At Scale with Reza Zadeh - TWiML Talk #34
My guest for the fourth show in the O'Reilly AI Series is Reza Zadeh. Reza is an adjunct professor of computational mathematics at Stanford University and founder and CEO of the startup Matroid. Reza has a background in machine translation and distributed machine learning, along with having helped build Apache Spark, and the"Who to Follow" feature on Twitter, which is based on a chapter from his PhD thesis. Our conversation focused on some of the challenges and approaches to scaling deep learning, both in general and in the context of his company’s video object detection service. Our conversation focused on some of the challenges and approaches to scaling deep learning, both in general and in the context of his company’s video object detection service. We also spoke about the advancement of computer vision technologies, using CPU's, GPU's, the upcoming shift to TPU's and we get below the surface on Apache Spark.

Jun 29, 2017 • 55min
Natural Language Understanding for Amazon Alexa with Zornitsa Kozareva - TWiML Talk #30
Our guest this week is Zornitsa Kozareva, Manager of Machine Learning with Amazon Web Services Deep Learning, where she leads a group focused on natural language processing and dialogue systems for products like Alexa and Lex, the latter of which we introduce in the podcast. We spend most of our time talking through the architecture of modern Natural Language Understanding systems, including the role of deep learning, and some of the various ways folks are working to overcome the challenges in this field, such as understanding human intent. If you’re interested in this field she mentions the AWS Chatbot Challenge, which you’ve still got a couple more weeks to participate in. The notes for this show can be found at twimlai.com/talk/30.

Jun 23, 2017 • 55min
Robotic Perception and Control with Chelsea Finn - TWiML Talk #29
This week we continue our series on industrial applications of machine learning and AI with a conversation with Chelsea Finn, a PhD student at UC Berkeley. Chelsea’s research is focused on machine learning for robotic perception and control. Despite being early in her career, Chelsea is an accomplished researcher with more than 14 published papers in the past 2 years, on subjects like Deep Visual Foresight , Model-Agnostic Meta-Learning and Visuomotor Learning to name a few, all of which we discuss in the show, along with topics like zero-shot, one-shot and few-shot learning. I’d also like to give a shout out to Shreyas, a listener who wrote in to request that we interview a current PhD student about their journey and experiences. Chelsea and I spend some time at the end of the interview talking about this, and she has some great advice for current and prospective PhD students but also independent learners in the field. During this part of the discussion I wonder out loud if any listeners would be interested in forming a virtual paper reading club of some sort. I’m not sure yet exactly what this would look like, but please drop a comment in the show notes if you’re interested. I'm going to once again deploy the Nerd Alert for this episode; Chelsea and I really dig deep into these learning methods and techniques, and this conversation gets pretty technical at times, to the point that I had a tough time keeping up myself. The notes for this page can be found at twimlai.com/talk/29