

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)
Sam Charrington
Machine learning and artificial intelligence are dramatically changing the way businesses operate and people live. The TWIML AI Podcast brings the top minds and ideas from the world of ML and AI to a broad and influential community of ML/AI researchers, data scientists, engineers and tech-savvy business and IT leaders. Hosted by Sam Charrington, a sought after industry analyst, speaker, commentator and thought leader. Technologies covered include machine learning, artificial intelligence, deep learning, natural language processing, neural networks, analytics, computer science, data science and more.
Episodes
Mentioned books

Apr 12, 2018 • 42min
Hyper-Personalizing the Customer Experience w/ AI with Rob Walker - TWiML Talk #127
In this episode, we're joined by Rob Walker, Vice President of decision management and analytics at Pegasystems, a leading provider of software for customer engagement and operational excellence. Rob and I discuss what’s required for enterprises to fully realize the vision of providing a hyper-personalized customer experience, and how machine learning and AI can be used to determine the next best action an organization should take to optimize sales, service, retention, and risk at every step in the customer relationship. Along the way we dig into a couple of key areas, specifically some of the techniques his organization uses to allow customers to manage the tradeoff between model performance and transparency, particularly in light of new laws like GDPR, and how all this ties to an enterprise’s ability to manage bias and ethical issues when deploying ML. We cover a lot of ground in this one and I think you’ll find Rob’s perspective really interesting. The notes for this show can be found at twimlai.com/talk/127.

Apr 9, 2018 • 46min
Information Extraction from Natural Document Formats with David Rosenberg - TWiML Talk #126
In this episode, I’m joined by David Rosenberg, data scientist in the office of the CTO at financial publisher Bloomberg, to discuss his work on “Extracting Data from Tables and Charts in Natural Document Formats.” Bloomberg is dealing with tons of financial and company data in pdfs and other unstructured document formats on a daily basis. To make meaning from this information more efficiently, David and his team have implemented a deep learning pipeline for extracting data from the documents. In our conversation, we dig into the information extraction process, including how it was built, how they sourced their training data, why they used LaTeX as an intermediate representation and how and why they optimize on pixel-perfect accuracy. There’s a lot of interesting info in this show and I think you’re going to enjoy it. The notes for this show can be found at twimlai.com/talk/126.

Apr 5, 2018 • 48min
Human-in-the-Loop AI for Emergency Response & More w/ Robert Munro - TWiML Talk #125
In this episode, I chat with Rob Munro, CTO of the newly branded Figure Eight, formerly known as CrowdFlower. Figure Eight’s Human-in-the-Loop AI platform supports data science & machine learning teams working on autonomous vehicles, consumer product identification, natural language processing, search relevance, intelligent chatbots, and more. Rob and I had a really interesting discussion covering some of the work he’s previously done applying machine learning to disaster response and epidemiology, including a use case involving text translation in the wake of the catastrophic 2010 Haiti earthquake. We also dig into some of the technical challenges that he’s encountered in trying to scale the human-in-the-loop side of machine learning since joining Figure Eight, including identifying more efficient approaches to image annotation as well as the use of zero shot machine learning to minimize training data requirements. Finally, we briefly discuss Figure Eight’s upcoming TrainAI conference, which takes place on May 9th & 10th in San Francisco. Train AI you can join me and Rob, along with a host of amazing speakers like Garry Kasparov, Andrej Karpathy, Marti Hearst and many more and receive hands-on AI, machine learning and deep learning training through real-world case studies on practical machine learning applications. For more information on TrainAI, head over to figure-eight.com/train-ai, and be sure to use code TWIMLAI for 30% off your registration! For those of you listening to this on or before April 6th, Figure Eight is offering an even better deal on event registration. Use the code figure-eight to register for only 88 dollars. The notes for this show can be found at twimlai.com/talk/125.

Apr 2, 2018 • 55min
Systems and Software for Machine Learning at Scale with Jeff Dean - TWiML Talk #124
In this episode I’m joined by Jeff Dean, Google Senior Fellow and head of the company’s deep learning research team Google Brain, who I had a chance to sit down with last week at the Googleplex in Mountain View. As you’ll hear, I was very excited for this interview, because so many of Jeff’s contributions since he started at Google in ‘99 have touched my life and work. In our conversation, Jeff and I dig into a bunch of the core machine learning innovations we’ve seen from Google. Of course we discuss TensorFlow, and its origins and evolution at Google. We also explore AI acceleration hardware, including TPU v1, v2 and future directions from Google and the broader market in this area. We talk through the machine learning toolchain, including some things that Googlers might take for granted, and where the recently announced Cloud AutoML fits in. We also discuss Google’s process for mapping problems across a variety of domains to deep learning, and much, much more. This was definitely one of my favorite conversations, and I'm pumped to be able to share it with you. The notes for this show can be found at twimlai.com/talk/124.

Mar 29, 2018 • 36min
Semantic Segmentation of 3D Point Clouds with Lyne Tchapmi - TWiML Talk #123
In this episode I’m joined by Lyne Tchapmi, PhD student in the Stanford Computational Vision and Geometry Lab, to discuss her paper, “SEGCloud: Semantic Segmentation of 3D Point Clouds.” SEGCloud is an end-to-end framework that performs 3D point-level segmentation combining the advantages of neural networks, trilinear interpolation and fully connected conditional random fields. In our conversation, Lyne and I cover the ins and outs of semantic segmentation, starting from the sensor data that we’re trying to segment, 2d vs 3d representations of that data, and how we go about automatically identifying classes. Along the way we dig into some of the details, including how she obtained a more fine grain labeling of points from sensor data and the transition from point clouds to voxels. The notes for this show can be found at twimlai.com/talk/123.

Mar 26, 2018 • 43min
Predicting Cardiovascular Risk Factors from Eye Images with Ryan Poplin - TWiML Talk #122
In this episode, I'm joined by Google Research Scientist Ryan Poplin, who recently co-authored the paper “Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning.” In our conversation, Ryan details his work training a deep learning model to predict various patient risk factors for heart disease, including some surprising ones like age and gender. We also dive into some interesting findings he discovered with regards to multi-task learning, as well as his use of an attention mechanisms to provide explainability. This was a really interesting discussion that I think you’ll really enjoy! The notes for this show can be found at twimlai.com/talk/122.

Mar 22, 2018 • 38min
Reproducibility and the Philosophy of Data with Clare Gollnick - TWiML Talk #121
In this episode, i'm joined by Clare Gollnick, CTO of Terbium Labs, to discuss her thoughts on the “reproducibility crisis” currently haunting the scientific landscape. For a little background, a “Nature” survey in 2016 showed that "more than 70% of researchers have tried and failed to reproduce another scientist's experiments, and more than half have failed to reproduce their own experiments." Clare gives us her take on the situation, and how it applies to data science, along with some great nuggets about the philosophy of data and a few interesting use cases as well. We also cover her thoughts on Bayesian vs Frequentist techniques and while we’re at it, the Vim vs Emacs debate. No, actually I’m just kidding on that last one. But this was indeed a very fun conversation that I think you’ll enjoy! For the complete show notes, visit twimlai.com/talk/121.

Mar 19, 2018 • 30min
Surveying the Connected Car Landscape with GK Senthil - TWiML Talk #120
In this episode, I’m joined by GK Senthil, director & chief product owner for innovation at Toyota Connected. GK and I spoke about some of the potential opportunities and challenges for smart cars. We discussed Toyota’s recently announced partnership with Amazon to embed Alexa in vehicles, and more generally the approach they’re taking to get connected car technology up to par with smartphones and other intelligent devices we use on a daily basis. We cover in-car voice recognition and touch on the ways ML & AI need to be developed to be useful in vehicles, as well as the approaches to getting there. The notes for this show can be found at twimlai.com/talk/120

Mar 15, 2018 • 47min
Adversarial Attacks Against Reinforcement Learning Agents with Ian Goodfellow & Sandy Huang
Ian Goodfellow, a Staff Research Scientist at Google Brain known for his work on adversarial machine learning, joins Sandy Huang, a PhD student at UC Berkeley focusing on adversarial attacks in reinforcement learning. They dive into how a single pixel alteration can drastically reduce the performance of Atari-playing AI. The conversation also touches on the philosophy behind error assessment in AI, reward complexity in reinforcement learning, and the implications of adversarial threats on security in AI systems, highlighting the urgent need for robust defenses.

Mar 12, 2018 • 48min
Towards Abstract Robotic Understanding with Raja Chatila - TWiML Talk #118
In this episode, we're joined by Raja Chatila, director of Intelligent Systems and Robotics at Pierre and Marie Curie University in Paris, and executive committee chair of the IEEE global initiative on ethics of intelligent and autonomous systems. Raja and I had a great chat about his research, which deals with robotic perception and discovery. We discuss the relationship between learning and discovery, particularly as it applies to robots and their environments, and the connection between robotic perception and action. We also dig into the concepts of affordances, abstract teachings, meta-reasoning and self-awareness as they apply to intelligent systems. Finally, we touch on the issue of values and ethics of these systems. The notes for this show can be found at twimlai.com/talk/118.