The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) cover image

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

Latest episodes

undefined
Jul 16, 2020 • 43min

What the Data Tells Us About COVID-19 with Eric Topol - #392

Today we’re joined by Eric Topol, Director & Founder of the Scripps Research Translational Institute, and author of the book Deep Medicine. We caught up with Eric to talk through what we’ve learned about the coronavirus since it's emergence, and the role of tech in understanding and preventing the spread of the disease. We also explore the broader opportunity for medical applications of AI, the promise of personalized medicine, and how techniques like federated learning can offer more privacy in healthc
undefined
Jul 13, 2020 • 46min

The Case for Hardware-ML Model Co-design with Diana Marculescu - #391

Today we’re joined by Diana Marculescu, Professor of Electrical and Computer Engineering at UT Austin. We caught up with Diana to discuss her work on hardware-aware machine learning. In particular, we explore her keynote, “Putting the “Machine” Back in Machine Learning: The Case for Hardware-ML Model Co-design” from CVPR 2020. We explore how her research group is focusing on making models more efficient so that they run better on current hardware systems, and how they plan on achieving true co
undefined
Jul 9, 2020 • 41min

Computer Vision for Remote AR with Flora Tasse - #390

Today we conclude our CVPR coverage joined by Flora Tasse, Head of Computer Vision & AI Research at Streem. Flora, a keynote speaker at the AR/VR workshop, walks us through some of the interesting use cases at the intersection of AI, CV, and AR technologies, her current work and the origin of her company Selerio, which was eventually acquired by Streem, the difficulties associated with building 3D mesh environments, extracting metadata from those environments, the challenges of pose estimation and more.
undefined
Jul 6, 2020 • 42min

Deep Learning for Automatic Basketball Video Production with Julian Quiroga - #389

Today we're Julian Quiroga, a Computer Vision Team Lead at Genius Sports, to discuss his recent paper “As Seen on TV: Automatic Basketball Video Production using Gaussian-based Actionness and Game States Recognition.” We explore camera setups and angles, detection and localization of figures on the court (players, refs, and of course, the ball), and the role that deep learning plays in the process. We also break down how this work applies to different sports, and the ways that he is looking to improve i
undefined
Jul 2, 2020 • 1h 21min

How External Auditing is Changing the Facial Recognition Landscape with Deb Raji - #388

Today we’re taking a break from our CVPR coverage to bring you this interview with Deb Raji, a Technology Fellow at the AI Now Institute. Recently there have been quite a few major news stories in the AI community, including the self-imposed moratorium on facial recognition tech from Amazon, IBM and Microsoft. In our conversation with Deb, we dig into these stories, discussing the origins of Deb’s work on the Gender Shades project, the harms of facial recognition, and much more.
undefined
Jun 29, 2020 • 45min

AI for High-Stakes Decision Making with Hima Lakkaraju - #387

Today we’re joined by Hima Lakkaraju, an Assistant Professor at Harvard University. At CVPR, Hima was a keynote speaker at the Fair, Data-Efficient and Trusted Computer Vision Workshop, where she spoke on Understanding the Perils of Black Box Explanations. Hima talks us through her presentation, which focuses on the unreliability of explainability techniques that center perturbations, such as LIME or SHAP, as well as how attacks on these models can be carried out, and what they look like.
undefined
Jun 25, 2020 • 46min

Invariance, Geometry and Deep Neural Networks with Pavan Turaga - #386

We continue our CVPR coverage with today’s guest, Pavan Turaga, Associate Professor at Arizona State University. Pavan gave a keynote presentation at the Differential Geometry in CV and ML Workshop, speaking on Revisiting Invariants with Geometry and Deep Learning. We go in-depth on Pavan’s research on integrating physics-based principles into computer vision. We also discuss the context of the term “invariant,” and Pavan contextualizes this work in relation to Hinton’s similar Capsule Network res
undefined
Jun 22, 2020 • 55min

Channel Gating for Cheaper and More Accurate Neural Nets with Babak Ehteshami Bejnordi - #385

Today we’re joined by Babak Ehteshami Bejnordi, a Research Scientist at Qualcomm. Babak is currently focused on conditional computation, which is the main driver for today’s conversation. We dig into a few papers in great detail including one from this year’s CVPR conference, Conditional Channel Gated Networks for Task-Aware Continual Learning, covering how gates are used to drive efficiency and accuracy, while decreasing model size, how this research manifests into actual products, and more!
undefined
Jun 18, 2020 • 52min

Machine Learning Commerce at Square with Marsal Gavalda - #384

Today we’re joined by Marsal Gavalda, head of machine learning for the Commerce platform at Square, where he manages the development of machine learning for various tools and platforms, including marketing, appointments, and above all, risk management. We explore how they manage their vast portfolio of projects, and how having an ML and technology focus at the outset of the company has contributed to their success, tips and best practices for internal democratization of ML, and much more.
undefined
Jun 15, 2020 • 44min

Cell Exploration with ML at the Allen Institute w/ Jianxu Chen - #383

Today we’re joined by Jianxu Chen, a scientist at the Allen Institute for Cell Science. At the latest GTC conference, Jianxu presented his work on the Allen Cell Explorer Toolkit, an open-source project that allows users to do 3D segmentation of intracellular structures in fluorescence microscope images at high resolutions, making the images more accessible for data analysis. We discuss three of the major components of the toolkit: the cell image analyzer, the image generator, and the image visualizer

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode