The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) cover image

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

Latest episodes

undefined
Jul 4, 2022 • 48min

On The Path Towards Robot Vision with Aljosa Osep - #581

Today we wrap up our coverage of the 2022 CVPR conference joined by Aljosa Osep, a postdoc at the Technical University of Munich & Carnegie Mellon University. In our conversation with Aljosa, we explore his broader research interests in achieving robot vision, and his vision for what it will look like when that goal is achieved. The first paper we dig into is Text2Pos: Text-to-Point-Cloud Cross-Modal Localization, which proposes a cross-modal localization module that learns to align textual descriptions with localization cues in a coarse-to-fine manner. Next up, we explore the paper Forecasting from LiDAR via Future Object Detection, which proposes an end-to-end approach for detection and motion forecasting based on raw sensor measurement as opposed to ground truth tracks. Finally, we discuss Aljosa’s third and final paper Opening up Open-World Tracking, which proposes a new benchmark to analyze existing efforts in multi-object tracking and constructs a baseline for these tasks.The complete show notes for this episode can be found at twimlai.com/go/581
undefined
Jun 27, 2022 • 47min

More Language, Less Labeling with Kate Saenko - #580

Today we continue our CVPR series joined by Kate Saenko, an associate professor at Boston University and a consulting professor for the MIT-IBM Watson AI Lab. In our conversation with Kate, we explore her research in multimodal learning, which she spoke about at the Multimodal Learning and Applications Workshop, one of a whopping 6 workshops she spoke at. We discuss the emergence of multimodal learning, the current research frontier, and Kate’s thoughts on the inherent bias in LLMs and how to deal with it. We also talk through some of the challenges that come up when building out applications, including the cost of labeling, and some of the methods she’s had success with. Finally, we discuss Kate’s perspective on the monopolizing of computing resources for “foundational” models, and her paper Unsupervised Domain Generalization by learning a Bridge Across Domains.The complete show notes for this episode can be found at twimlai.com/go/580
undefined
Jun 20, 2022 • 51min

Optical Flow Estimation, Panoptic Segmentation, and Vision Transformers with Fatih Porikli - #579

Today we kick off our annual coverage of the CVPR conference joined by Fatih Porikli, Senior Director of Engineering at Qualcomm AI Research. In our conversation with Fatih, we explore a trio of CVPR-accepted papers, as well as a pair of upcoming workshops at the event. The first paper, Panoptic, Instance and Semantic Relations: A Relational Context Encoder to Enhance Panoptic Segmentation, presents a novel framework to integrate semantic and instance contexts for panoptic segmentation. Next up, we discuss Imposing Consistency for Optical Flow Estimation, a paper that introduces novel and effective consistency strategies for optical flow estimation. The final paper we discuss is IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering in Indoor Scenes, which proposes a transformer architecture to simultaneously estimate depths, normals, spatially-varying albedo, roughness, and lighting from a single image of an indoor scene. For each paper, we explore the motivations and challenges and get concrete examples to demonstrate each problem and solution presented.The complete show notes for this episode can be found at twimlai.com/go/579
undefined
Jun 13, 2022 • 40min

Data Governance for Data Science with Adam Wood - #578

Today we’re joined by Adam Wood, Director of Data Governance and Data Quality at Mastercard. In our conversation with Adam, we explore the challenges that come along with data governance at a global scale, including dealing with regional regulations like GDPR and federating records at scale. We discuss the role of feature stores in keeping track of data lineage and how Adam and his team have dealt with the challenges of metadata management, how large organizations like Mastercard are dealing with enabling feature reuse, and the steps they take to alleviate bias, especially in scenarios like acquisitions. Finally, we explore data quality for data science and why Adam sees it as an encouraging area of growth within the company, as well as the investments they’ve made in tooling around data management, catalog, feature management, and more.The complete show notes for this episode can be found at twimlai.com/go/578
undefined
Jun 6, 2022 • 46min

Feature Platforms for Data-Centric AI with Mike Del Balso - #577

In the latest installment of our Data-Centric AI series, we’re joined by a friend of the show Mike Del Balso, Co-founder and CEO of Tecton. If you’ve heard any of our other conversations with Mike, you know we spend a lot of time discussing feature stores, or as he now refers to them, feature platforms. We explore the current complexity of data infrastructure broadly and how that has changed over the last five years, as well as the maturation of streaming data platforms. We discuss the wide vs deep paradox that exists around ML tooling, and the idea around the “ML Flywheel”, a strategy that leverages data to accelerate machine learning. Finally, we spend time discussing internal ML team construction, some of the challenges that organizations face when building their ML platforms teams, and how they can avoid the pitfalls as they arise.The complete show notes for this episode can be found at twimlai.com/go/577
undefined
May 30, 2022 • 51min

The Fallacy of "Ground Truth" with Shayan Mohanty - #576

Today we continue our Data-centric AI series joined by Shayan Mohanty, CEO at Watchful. In our conversation with Shayan, we focus on the data labeling aspect of the machine learning process, and ways that a data-centric approach could add value and reduce cost by multiple orders of magnitude. Shayan helps us define “data-centric”, while discussing the main challenges that organizations face when dealing with labeling, how these problems are currently being solved, and how techniques like active learning and weak supervision could be used to more effectively label. We also explore the idea of machine teaching, which focuses on using techniques that make the model training process more efficient, and what organizations need to be successful when trying to make the aforementioned mindset shift to DCAI. The complete show notes for this episode can be found at twimlai.com/go/576
undefined
May 23, 2022 • 48min

Principle-centric AI with Adrien Gaidon - #575

This week, we continue our conversations around the topic of Data-Centric AI joined by a friend of the show Adrien Gaidon, the head of ML research at the Toyota Research Institute (TRI). In our chat, Adrien expresses a fourth, somewhat contrarian, viewpoint to the three prominent schools of thought that organizations tend to fall into, as well as a great story about how the breakthrough came via an unlikely source. We explore his principle-centric approach to machine learning as well as the role of self-supervised machine learning and synthetic data in this and other research threads. Make sure you’re following along with the entire DCAI series at twimlai.com/go/dcai.The complete show notes for this episode can be found at twimlai.com/go/575
undefined
May 19, 2022 • 37min

Data Debt in Machine Learning with D. Sculley - #574

Today we kick things off with a conversation with D. Sculley, a director on the Google Brain team. Many listeners of today’s show will know D. from his work on the paper, The Hidden Technical Debt in Machine Learning Systems, and of course, the infamous diagram. D. has recently translated the idea of technical debt into data debt, something we spend a bit of time on in the interview.We discuss his view of the concept of DCAI, where debt fits into the conversation of data quality, and what a shift towards data-centrism looks like in a world of increasingly larger models i.e. GPT-3 and the recent PALM models. We also explore common sources of data debt, what are things that the community can and have done to mitigate these issues, the usefulness of causal inference graphs in this work, and much more! If you enjoyed this interview or want to hear more on this topic, check back on the DCAI series page weekly at https://twimlai.com/podcast/twimlai/series/data-centric-ai.The complete show notes for this episode can be found at twimlai.com/go/574
undefined
May 16, 2022 • 39min

AI for Enterprise Decisioning at Scale with Rob Walker - #573

Today we’re joined by Rob Walker, VP of decisioning & analytics and gm of one-to-one customer engagement at Pegasystems. Rob, who you might know from his previous appearances on the podcast, joins us to discuss his work on AI and ML in the context of customer engagement and decisioning, the various problems that need to be solved, including solving the “next best” problem. We explore the distinction between the idea of the next best action and determining it from a recommender system, how the combination of machine learning and heuristics are currently co-existing in engagements, scaling model evaluation, and some of the challenges they’re facing when dealing with problems of responsible AI and how they’re managed. Finally, we spend a few minutes digging into the upcoming PegaWorld conference, and what attendees should anticipate at the event.The complete show notes for this episode can be found at twimlai.com/go/573
undefined
May 12, 2022 • 42min

Data Rights, Quantification and Governance for Ethical AI with Margaret Mitchell - #572

Today we close out our coverage of the ICLR series joined by Meg Mitchell, chief ethics scientist and researcher at Hugging Face. In our conversation with Meg, we discuss her participation in the WikiM3L Workshop, as well as her transition into her new role at Hugging Face, which has afforded her the ability to prioritize coding in her work around AI ethics. We explore her thoughts on the work happening in the fields of data curation and data governance, her interest in the inclusive sharing of datasets and creation of models that don't disproportionately underperform or exploit subpopulations, and how data collection practices have changed over the years. We also touch on changes to data protection laws happening in some pretty uncertain places, the evolution of her work on Model Cards, and how she’s using this and recent Data Cards work to lower the barrier to entry to responsibly informed development of data and sharing of data.The complete show notes for this episode can be found at twimlai.com/go/572

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode