Mathematical Moments from the American Mathematical Society

American Mathematical Society
undefined
Nov 13, 2008 • 7min

Restoring Genius - Discovering lost works of Archimedes - Part 2

Archimedes was one of the most brilliant people ever, on a par with Einstein and Newton. Yet very little of what he wrote still exists because of the passage of time, and because many copies of his works were erased and the cleaned pages were used again. One of those written-over works (called a palimpsest) has resurfaced, and advanced digital imaging techniques using statistics and linear algebra have revealed his previously unknown discoveries in combinatorics and calculus. This leads to a question that would stump even Archimedes: How much further would mathematics and science have progressed had these discoveries not been erased? One of the most dramatic revelations of Archimedes. work was done using X-ray fluorescence. A painting, forged in the 1940s by one of the book.s former owners, obscured the original text, but X-rays penetrated the painting and highlighted the iron in the ancient ink, revealing a page of Archimedes. treatise The Method of Mechanical Theorems. The entire process of uncovering this and his other ideas is made possible by modern mathematics and physics, which are built on his discoveries and techniques. This completion of a circle of progress is entirely appropriate since one of Archimedes. accomplishments that wasn.t lost is his approximation of pi. For More Information: The Archimedes Codex, Reviel Netz and William Noel, 2007.
undefined
Nov 13, 2008 • 5min

Restoring Genius - Discovering lost works of Archimedes - Part 1

Archimedes was one of the most brilliant people ever, on a par with Einstein and Newton. Yet very little of what he wrote still exists because of the passage of time, and because many copies of his works were erased and the cleaned pages were used again. One of those written-over works (called a palimpsest) has resurfaced, and advanced digital imaging techniques using statistics and linear algebra have revealed his previously unknown discoveries in combinatorics and calculus. This leads to a question that would stump even Archimedes: How much further would mathematics and science have progressed had these discoveries not been erased? One of the most dramatic revelations of Archimedes. work was done using X-ray fluorescence. A painting, forged in the 1940s by one of the book.s former owners, obscured the original text, but X-rays penetrated the painting and highlighted the iron in the ancient ink, revealing a page of Archimedes. treatise The Method of Mechanical Theorems. The entire process of uncovering this and his other ideas is made possible by modern mathematics and physics, which are built on his discoveries and techniques. This completion of a circle of progress is entirely appropriate since one of Archimedes. accomplishments that wasn.t lost is his approximation of pi. For More Information: The Archimedes Codex, Reviel Netz and William Noel, 2007.
undefined
Nov 13, 2008 • 6min

Improving Stents - Part 2

Stents are expandable tubes that are inserted into blocked or damaged blood vessels. They offer a practical way to treat coronary artery disease, repairing vessels and keeping them open so that blood can flow freely. When stents work, they are a great alternative to radical surgery, but they can deteriorate or become dislodged. Mathematical models of blood vessels and stents are helping to determine better shapes and materials for the tubes. These models are so accurate that the FDA is considering requiring mathematical modeling in the design of stents before any further testing is done, to reduce the need for expensive experimentation. Precise modeling of the entire human vascular system is far beyond the reach of current computational power, so researchers focus their detailed models on small subsections, which are coupled with simpler models of the rest of the system. The Navier-Stokes equations are used to represent the flow of blood and its interaction with vessel walls. A mathematical proof was the central part of recent research that led to the abandonment of one type of stent and the design of better ones. The goal now is to create better computational fluid-vessel models and stent models to improve the treatment and prediction of coronary artery disease the major cause of heart attacks. For More Information: Design of Optimal Endoprostheses Using Mathematical Modeling, Canic, Krajcer, and Lapin, Endovascular Today, May 2006.
undefined
Nov 13, 2008 • 7min

Improving Stents - Part 1

Stents are expandable tubes that are inserted into blocked or damaged blood vessels. They offer a practical way to treat coronary artery disease, repairing vessels and keeping them open so that blood can flow freely. When stents work, they are a great alternative to radical surgery, but they can deteriorate or become dislodged. Mathematical models of blood vessels and stents are helping to determine better shapes and materials for the tubes. These models are so accurate that the FDA is considering requiring mathematical modeling in the design of stents before any further testing is done, to reduce the need for expensive experimentation. Precise modeling of the entire human vascular system is far beyond the reach of current computational power, so researchers focus their detailed models on small subsections, which are coupled with simpler models of the rest of the system. The Navier-Stokes equations are used to represent the flow of blood and its interaction with vessel walls. A mathematical proof was the central part of recent research that led to the abandonment of one type of stent and the design of better ones. The goal now is to create better computational fluid-vessel models and stent models to improve the treatment and prediction of coronary artery disease the major cause of heart attacks. For More Information: Design of Optimal Endoprostheses Using Mathematical Modeling, Canic, Krajcer, and Lapin, Endovascular Today, May 2006.
undefined
Aug 28, 2008 • 8min

Steering Towards Efficiency

The racing team is just as important to a car.s finish as the driver is. With little to separate competitors over hundreds of laps, teams search for any technological edge that will propel them to Victory Lane. Of special use today is computational fluid dynamics, which is used to predict airflow over a car, both alone and in relation to other cars (for example, when drafting). Engineers also rely on more basic subjects, such as calculus and geometry, to improve their cars. In fact, one racing team engineer said of his calculus and physics teachers, the classes they taught to this day were the most important classes I.ve ever taken.(1) Mathematics helps the performance and efficiency of non-NASCAR vehicles, as well. To improve engine performance, data must be collected and processed very rapidly so that control devices can make adjustments to significant quantities such as air/fuel ratios. Innovative sampling techniques make this real-time data collection and processing possible. This makes for lower emissions and improved fuel economy goals worthy of a checkered flag. For More Information: The Physics of NASCAR, Diandra Leslie-Pelecky, 2008.
undefined
Jun 5, 2008 • 8min

Going with the Floes - Part 4

Sea ice is one of the least understood components of our climate. Naturally its abundance or scarcity is a telling sign of climate change, but sea ice is also an important actor in change as well, insulating the ocean and reflecting sunlight. A branch of mathematics called percolation theory helps explain how salt water travels through sea ice, a process that is crucial both to the amount of sea ice present and to the microscopic communities that sustain polar ecosystems. By taking samples, doing on-site experiments, and then incorporating the data into models of porous materials, mathematicians are working to understand sea ice and help refine climate predictions. Using probability, numerical analysis, and partial differential equations, researchers have recently shown that the permeability of sea ice is similar to that of some sedimentary rocks in the earth.s crust, even though the substances are otherwise dissimilar. One major difference between the two is the drastic changes in permeability of sea ice, from total blockage to clear passage, that occur over a range of just a few degrees. This difference can have a major effect on measurements by satellite, which provide information on the extent and thickness of sea ice. Results about sea ice will not only make satellite measurements more reliable, but they can also be applied to descriptions of lung and bone porosity, and to understanding ice on other planets. Image: Pancake ice in Antarctica, courtesy of Ken Golden. For More Information: "Thermal evolution of permeability and microstructure in sea ice," K. M. Golden, et al., Geophysical Research Letters, August 28, 2007.
undefined
Jun 5, 2008 • 11min

Going with the Floes - Part 3

Sea ice is one of the least understood components of our climate. Naturally its abundance or scarcity is a telling sign of climate change, but sea ice is also an important actor in change as well, insulating the ocean and reflecting sunlight. A branch of mathematics called percolation theory helps explain how salt water travels through sea ice, a process that is crucial both to the amount of sea ice present and to the microscopic communities that sustain polar ecosystems. By taking samples, doing on-site experiments, and then incorporating the data into models of porous materials, mathematicians are working to understand sea ice and help refine climate predictions. Using probability, numerical analysis, and partial differential equations, researchers have recently shown that the permeability of sea ice is similar to that of some sedimentary rocks in the earth.s crust, even though the substances are otherwise dissimilar. One major difference between the two is the drastic changes in permeability of sea ice, from total blockage to clear passage, that occur over a range of just a few degrees. This difference can have a major effect on measurements by satellite, which provide information on the extent and thickness of sea ice. Results about sea ice will not only make satellite measurements more reliable, but they can also be applied to descriptions of lung and bone porosity, and to understanding ice on other planets. Image: Pancake ice in Antarctica, courtesy of Ken Golden. For More Information: "Thermal evolution of permeability and microstructure in sea ice," K. M. Golden, et al., Geophysical Research Letters, August 28, 2007.
undefined
Jun 5, 2008 • 10min

Going with the Floes - Part 1

Sea ice is one of the least understood components of our climate. Naturally its abundance or scarcity is a telling sign of climate change, but sea ice is also an important actor in change as well, insulating the ocean and reflecting sunlight. A branch of mathematics called percolation theory helps explain how salt water travels through sea ice, a process that is crucial both to the amount of sea ice present and to the microscopic communities that sustain polar ecosystems. By taking samples, doing on-site experiments, and then incorporating the data into models of porous materials, mathematicians are working to understand sea ice and help refine climate predictions. Using probability, numerical analysis, and partial differential equations, researchers have recently shown that the permeability of sea ice is similar to that of some sedimentary rocks in the earth.s crust, even though the substances are otherwise dissimilar. One major difference between the two is the drastic changes in permeability of sea ice, from total blockage to clear passage, that occur over a range of just a few degrees. This difference can have a major effect on measurements by satellite, which provide information on the extent and thickness of sea ice. Results about sea ice will not only make satellite measurements more reliable, but they can also be applied to descriptions of lung and bone porosity, and to understanding ice on other planets. Image: Pancake ice in Antarctica, courtesy of Ken Golden. For More Information: "Thermal evolution of permeability and microstructure in sea ice," K. M. Golden, et al., Geophysical Research Letters, August 28, 2007.
undefined
Jun 5, 2008 • 5min

Hearing a Master.s Voice

The spools of wire below contain the only known live recording of the legendary folk singer Woody Guthrie. A mathematician, Kevin Short, was part of a team that used signal processing techniques associated with chaotic music compression to recapture the live performance, which was often completely unintelligible. The modern techniques employed, instead of resulting in a cold, digital output, actually retained the original concert.s warmth and depth. As a result, Short and the team received a Grammy Award for their remarkable restoration of the recording. To begin the restoration the wire had to be manually pulled through a playback device and converted to a digital format. Since the pulling speed wasn.t constant there was distortion in the sound, frequently quite considerable. Algorithms corrected for the speed variations and reconfigured the sound waves to their original shape by using a background noise with a known frequency as a "clock." This clever correction also relied on sampling the sound selectively, and reconstructing and resampling the music between samples. Mathematics did more than help recreate a performance lost for almost 60 years: These methods are used to digitize treasured tapes of audiophiles everywhere. For More Information: "The Grammy in Mathematics," Julie J. Rehmeyer, Science News Online, February 9, 2008.
undefined
Jun 5, 2008 • 8min

Going with the Floes - Part 2

Sea ice is one of the least understood components of our climate. Naturally its abundance or scarcity is a telling sign of climate change, but sea ice is also an important actor in change as well, insulating the ocean and reflecting sunlight. A branch of mathematics called percolation theory helps explain how salt water travels through sea ice, a process that is crucial both to the amount of sea ice present and to the microscopic communities that sustain polar ecosystems. By taking samples, doing on-site experiments, and then incorporating the data into models of porous materials, mathematicians are working to understand sea ice and help refine climate predictions. Using probability, numerical analysis, and partial differential equations, researchers have recently shown that the permeability of sea ice is similar to that of some sedimentary rocks in the earth.s crust, even though the substances are otherwise dissimilar. One major difference between the two is the drastic changes in permeability of sea ice, from total blockage to clear passage, that occur over a range of just a few degrees. This difference can have a major effect on measurements by satellite, which provide information on the extent and thickness of sea ice. Results about sea ice will not only make satellite measurements more reliable, but they can also be applied to descriptions of lung and bone porosity, and to understanding ice on other planets. Image: Pancake ice in Antarctica, courtesy of Ken Golden. For More Information: "Thermal evolution of permeability and microstructure in sea ice," K. M. Golden, et al., Geophysical Research Letters, August 28, 2007.

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app