

Mathematical Moments from the American Mathematical Society
American Mathematical Society
The American Mathematical Society's Mathematical Moments program promotes appreciation and understanding of the role mathematics plays in science, nature, technology, and human culture. Listen to researchers talk about how they use math, from creating realistic animation to beating cancer.
Episodes
Mentioned books

Nov 13, 2008 • 7min
Restoring Genius - Discovering lost works of Archimedes - Part 2
Archimedes was one of the most brilliant people ever, on a par with Einstein and Newton. Yet very little of what he wrote still exists because of the passage of time, and because many copies of his works were erased and the cleaned pages were used again. One of those written-over works (called a palimpsest) has resurfaced, and advanced digital imaging techniques using statistics and linear algebra have revealed his previously unknown discoveries in combinatorics and calculus. This leads to a question that would stump even Archimedes: How much further would mathematics and science have progressed had these discoveries not been erased?
One of the most dramatic revelations of Archimedes. work was done using X-ray fluorescence. A painting, forged in the 1940s by one of the book.s former owners, obscured the original text, but X-rays penetrated the painting and highlighted the iron in the ancient ink, revealing a page of Archimedes. treatise The Method of Mechanical Theorems. The entire process of uncovering this and his other ideas is made possible by modern mathematics and physics, which are built on his discoveries and techniques.
This completion of a circle of progress is entirely appropriate since one of Archimedes. accomplishments that wasn.t lost is his approximation of pi.
For More Information: The Archimedes Codex, Reviel Netz and William Noel, 2007.

Nov 13, 2008 • 5min
Restoring Genius - Discovering lost works of Archimedes - Part 1
Archimedes was one of the most brilliant people ever, on a par with Einstein and Newton. Yet very little of what he wrote still exists because of the passage of time, and because many copies of his works were erased and the cleaned pages were used again. One of those written-over works (called a palimpsest) has resurfaced, and advanced digital imaging techniques using statistics and linear algebra have revealed his previously unknown discoveries in combinatorics and calculus. This leads to a question that would stump even Archimedes: How much further would mathematics and science have progressed had these discoveries not been erased?
One of the most dramatic revelations of Archimedes. work was done using X-ray fluorescence. A painting, forged in the 1940s by one of the book.s former owners, obscured the original text, but X-rays penetrated the painting and highlighted the iron in the ancient ink, revealing a page of Archimedes. treatise The Method of Mechanical Theorems. The entire process of uncovering this and his other ideas is made possible by modern mathematics and physics, which are built on his discoveries and techniques.
This completion of a circle of progress is entirely appropriate since one of Archimedes. accomplishments that wasn.t lost is his approximation of pi.
For More Information: The Archimedes Codex, Reviel Netz and William Noel, 2007.

Nov 13, 2008 • 6min
Improving Stents - Part 2
Stents are expandable tubes that are inserted into blocked or damaged blood
vessels. They offer a practical way to treat coronary artery disease, repairing
vessels and keeping them open so that blood can flow freely. When stents
work, they are a great alternative to radical surgery, but they can deteriorate or
become dislodged. Mathematical models of blood vessels and stents are helping
to determine better shapes and materials for the tubes. These models are so
accurate that the FDA is considering requiring mathematical modeling in the
design of stents before any further testing is done, to reduce the need for expensive
experimentation.
Precise modeling of the entire human vascular system is far beyond the reach of
current computational power, so researchers focus their detailed models on small
subsections, which are coupled with simpler models of the rest of the system.
The Navier-Stokes equations are used to represent the flow of blood and its
interaction with vessel walls. A mathematical proof was the central part of recent
research that led to the abandonment of one type of stent and the design of
better ones. The goal now is to create better computational fluid-vessel models
and stent models to improve the treatment and prediction of coronary artery
disease the major cause of heart attacks.
For More Information: Design of Optimal Endoprostheses Using Mathematical Modeling,
Canic, Krajcer, and Lapin, Endovascular Today, May 2006.

Nov 13, 2008 • 7min
Improving Stents - Part 1
Stents are expandable tubes that are inserted into blocked or damaged blood
vessels. They offer a practical way to treat coronary artery disease, repairing
vessels and keeping them open so that blood can flow freely. When stents
work, they are a great alternative to radical surgery, but they can deteriorate or
become dislodged. Mathematical models of blood vessels and stents are helping
to determine better shapes and materials for the tubes. These models are so
accurate that the FDA is considering requiring mathematical modeling in the
design of stents before any further testing is done, to reduce the need for expensive
experimentation.
Precise modeling of the entire human vascular system is far beyond the reach of
current computational power, so researchers focus their detailed models on small
subsections, which are coupled with simpler models of the rest of the system.
The Navier-Stokes equations are used to represent the flow of blood and its
interaction with vessel walls. A mathematical proof was the central part of recent
research that led to the abandonment of one type of stent and the design of
better ones. The goal now is to create better computational fluid-vessel models
and stent models to improve the treatment and prediction of coronary artery
disease the major cause of heart attacks.
For More Information: Design of Optimal Endoprostheses Using Mathematical Modeling,
Canic, Krajcer, and Lapin, Endovascular Today, May 2006.

Aug 28, 2008 • 8min
Steering Towards Efficiency
The racing team is just as important to a car.s finish as the driver is. With little to
separate competitors over hundreds of laps, teams search for any technological
edge that will propel them to Victory Lane. Of special use today is computational
fluid dynamics, which is used to predict airflow over a car, both alone and in relation
to other cars (for example, when drafting). Engineers also rely on more basic
subjects, such as calculus and geometry, to improve their cars. In fact, one racing
team engineer said of his calculus and physics teachers, the classes they taught to
this day were the most important classes I.ve ever taken.(1)
Mathematics helps the performance and efficiency of non-NASCAR vehicles, as
well. To improve engine performance, data must be collected and processed very
rapidly so that control devices can make adjustments to significant quantities such
as air/fuel ratios. Innovative sampling techniques make this real-time data collection
and processing possible. This makes for lower emissions and improved fuel
economy goals worthy of a checkered flag.
For More Information: The Physics of NASCAR, Diandra Leslie-Pelecky, 2008.

Jun 5, 2008 • 8min
Going with the Floes - Part 4
Sea ice is one of the least understood components of our climate. Naturally its abundance or scarcity is a telling sign of climate change, but sea ice is also an important actor in change as well, insulating the ocean and reflecting sunlight. A branch of mathematics called percolation theory helps explain how salt water travels through sea ice, a process that is crucial both to the amount of sea ice present and to the microscopic communities that sustain polar ecosystems. By taking samples, doing on-site experiments, and then incorporating the data into models of porous materials, mathematicians are working to understand sea ice and help refine climate predictions.
Using probability, numerical analysis, and partial differential equations, researchers have recently shown that the permeability of sea ice is similar to that of some sedimentary rocks in the earth.s crust, even though the substances are otherwise dissimilar. One major difference between the two is the drastic changes in permeability of sea ice, from total blockage to clear passage, that occur over a range of just a few degrees. This difference can have a major effect on measurements by satellite, which provide information on the extent and thickness of sea ice. Results about sea ice will not only make satellite measurements more reliable, but they can also be applied to descriptions of lung and bone porosity, and to understanding ice on other planets.
Image: Pancake ice in Antarctica, courtesy of Ken Golden.
For More Information: "Thermal evolution of permeability and microstructure in sea ice," K. M. Golden, et al., Geophysical Research Letters, August 28, 2007.

Jun 5, 2008 • 11min
Going with the Floes - Part 3
Sea ice is one of the least understood components of our climate. Naturally its abundance or scarcity is a telling sign of climate change, but sea ice is also an important actor in change as well, insulating the ocean and reflecting sunlight. A branch of mathematics called percolation theory helps explain how salt water travels through sea ice, a process that is crucial both to the amount of sea ice present and to the microscopic communities that sustain polar ecosystems. By taking samples, doing on-site experiments, and then incorporating the data into models of porous materials, mathematicians are working to understand sea ice and help refine climate predictions.
Using probability, numerical analysis, and partial differential equations, researchers have recently shown that the permeability of sea ice is similar to that of some sedimentary rocks in the earth.s crust, even though the substances are otherwise dissimilar. One major difference between the two is the drastic changes in permeability of sea ice, from total blockage to clear passage, that occur over a range of just a few degrees. This difference can have a major effect on measurements by satellite, which provide information on the extent and thickness of sea ice. Results about sea ice will not only make satellite measurements more reliable, but they can also be applied to descriptions of lung and bone porosity, and to understanding ice on other planets.
Image: Pancake ice in Antarctica, courtesy of Ken Golden.
For More Information: "Thermal evolution of permeability and microstructure in sea ice," K. M. Golden, et al., Geophysical Research Letters, August 28, 2007.

Jun 5, 2008 • 10min
Going with the Floes - Part 1
Sea ice is one of the least understood components of our climate. Naturally its abundance or scarcity is a telling sign of climate change, but sea ice is also an important actor in change as well, insulating the ocean and reflecting sunlight. A branch of mathematics called percolation theory helps explain how salt water travels through sea ice, a process that is crucial both to the amount of sea ice present and to the microscopic communities that sustain polar ecosystems. By taking samples, doing on-site experiments, and then incorporating the data into models of porous materials, mathematicians are working to understand sea ice and help refine climate predictions.
Using probability, numerical analysis, and partial differential equations, researchers have recently shown that the permeability of sea ice is similar to that of some sedimentary rocks in the earth.s crust, even though the substances are otherwise dissimilar. One major difference between the two is the drastic changes in permeability of sea ice, from total blockage to clear passage, that occur over a range of just a few degrees. This difference can have a major effect on measurements by satellite, which provide information on the extent and thickness of sea ice. Results about sea ice will not only make satellite measurements more reliable, but they can also be applied to descriptions of lung and bone porosity, and to understanding ice on other planets.
Image: Pancake ice in Antarctica, courtesy of Ken Golden.
For More Information: "Thermal evolution of permeability and microstructure in sea ice," K. M. Golden, et al., Geophysical Research Letters, August 28, 2007.

Jun 5, 2008 • 5min
Hearing a Master.s Voice
The spools of wire below contain the only known live recording of the legendary folk singer Woody Guthrie. A mathematician, Kevin Short, was part of a team that used signal processing techniques associated with chaotic music compression to recapture the live performance, which was often completely unintelligible. The modern techniques employed, instead of resulting in a cold, digital output, actually retained the original concert.s warmth and depth. As a result, Short and the team received a Grammy Award for their remarkable restoration of the recording.
To begin the restoration the wire had to be manually pulled through a playback device and converted to a digital format. Since the pulling speed wasn.t constant there was distortion in the sound, frequently quite considerable. Algorithms corrected for the speed variations and reconfigured the sound waves to their original shape by using a background noise with a known frequency as a "clock." This clever correction also relied on sampling the sound selectively, and reconstructing and
resampling the music between samples. Mathematics did more than help recreate a performance lost for almost 60 years: These methods are used to digitize treasured tapes of audiophiles everywhere.
For More Information: "The Grammy in Mathematics," Julie J. Rehmeyer, Science News Online, February 9, 2008.

Jun 5, 2008 • 8min
Going with the Floes - Part 2
Sea ice is one of the least understood components of our climate. Naturally its abundance or scarcity is a telling sign of climate change, but sea ice is also an important actor in change as well, insulating the ocean and reflecting sunlight. A branch of mathematics called percolation theory helps explain how salt water travels through sea ice, a process that is crucial both to the amount of sea ice present and to the microscopic communities that sustain polar ecosystems. By taking samples, doing on-site experiments, and then incorporating the data into models of porous materials, mathematicians are working to understand sea ice and help refine climate predictions.
Using probability, numerical analysis, and partial differential equations, researchers have recently shown that the permeability of sea ice is similar to that of some sedimentary rocks in the earth.s crust, even though the substances are otherwise dissimilar. One major difference between the two is the drastic changes in permeability of sea ice, from total blockage to clear passage, that occur over a range of just a few degrees. This difference can have a major effect on measurements by satellite, which provide information on the extent and thickness of sea ice. Results about sea ice will not only make satellite measurements more reliable, but they can also be applied to descriptions of lung and bone porosity, and to understanding ice on other planets.
Image: Pancake ice in Antarctica, courtesy of Ken Golden.
For More Information: "Thermal evolution of permeability and microstructure in sea ice," K. M. Golden, et al., Geophysical Research Letters, August 28, 2007.