
Mathematical Moments from the American Mathematical Society
The American Mathematical Society's Mathematical Moments program promotes appreciation and understanding of the role mathematics plays in science, nature, technology, and human culture. Listen to researchers talk about how they use math, from creating realistic animation to beating cancer.
Latest episodes

Nov 15, 2022 • 15min
Keeping the Lights On
Rodney Kizito from U.S. Department of Energy discusses solar energy, mathematics, and microgrids.
When you flip a switch to turn on a light, where does that energy come from? In a traditional power grid, electricity is generated at large power plants and then transmitted long distances. But now, individual homes and businesses with solar panels can generate some or all of their own power and even send energy into the rest of the grid. Modifying the grid so that power can flow in both directions depends on mathematics. With linear programming and operations research, engineers design efficient and reliable systems that account for constraints like the electricity demand at each location, the costs of solar installation and distribution, and the energy produced under different weather conditions. Similar mathematics helps create "microgrids" — small, local systems that can operate independent of the main grid.

Jun 28, 2022 • 12min
Driving Up Air Pollution
Karen Rios Soto explains how mathematics illuminates the link between air pollution from motor vehicle emissions and asthma.
Air pollution causes the premature deaths of an estimated seven million people each year, and it makes life worse for all of us. People with asthma can experience chest tightness, coughing or wheezing, and difficulty breathing when triggered by air pollution. One major source is gas- and diesel-powered cars and trucks, which emit "ultrafine" particles less than 0.1 micrometers across. That's about the width of the virus that causes COVID-19, so tiny that these particles are not currently regulated by the US Environmental Protection Agency. Yet ultrafine particles can easily enter your lungs and be absorbed into your bloodstream, causing health issues such as an asthma attack or even neurodegenerative diseases. Mathematics can help us understand the extent of the problem and how to solve it.

May 19, 2022 • 11min
Deblurring Images
Malena Espanol explains how she and others use linear algebra to correct blurry images.
Imagine snapping a quick picture of a flying bird. The image is likely to come out blurry. But thanks to mathematics, you might be able to use software to improve the photo. Scientists often deal with blurry pictures, too. Linear algebra and clever numerical methods allow researchers to fix imperfect photos in medical imaging, astronomy, and more. In a computer, the pixels that make up an image can be represented as a column of numbers called a vector. Blurring happens when the light meant for each pixel spills into the adjacent pixels, changing the numbers in a way that can be mathematically represented as an enormous matrix. But knowing that matrix is not enough if you want to reconstruct the original (non-blurry) image.

Feb 14, 2022 • 14min
Exploring Thermodynamics with Billiards
Tim Chumley explains the connections between random billiards and the science of heat and energy transfer.
If you've ever played billiards or pool, you've used your intuition and some mental geometry to plan your shots. Mathematicians have gone a step further, using these games as inspiration for new mathematical problems. Starting from the simple theoretical setup of a single ball bouncing around in an enclosed region, the possibilities are endless. For instance, if the region is shaped like a stadium (a rectangle with semicircles on opposite sides), and several balls start moving with nearly the same velocity and position, their paths in the region soon differ wildly: chaos. Mathematical billiards even have connections to thermodynamics, the branch of physics dealing with heat, temperature, and energy transfer.

Oct 21, 2021 • 14min
Pinpointing How Genes Interact
Lorin Crawford explains how he uses math to analyze interactions between genes.
Your DNA (the biological instruction manual in all of your cells) contains a mind-boggling amount of information represented in roughly 20,000 genes that encode proteins, plus a similar number of genes with other functions. As the cost of analyzing an individual's DNA has plummeted, it has become possible to search the entire human genome for genetic variants that are associated with traits such as height or susceptibility to certain diseases. Sometimes, one gene has a straightforward impact on the trait. But in many cases, the effect of one gene variant depends on which variants of other genes are present, a phenomenon called "epistasis." Studying such interactions involves huge datasets encompassing the DNA of hundreds of thousands of people. Mathematically, that requires time-intensive calculations with massive matrices and a good working knowledge of statistics.

Sep 1, 2021 • 14min
Securing Data in the Quantum Era
Angela Robinson explains the math behind the next generation of cryptographic algorithms.
Whenever you log in to a website, send an email, or make an online purchase, you're counting on your data being sent securely, without hackers being able to crack the code. Our standard cryptographic systems hinge on mathematical problems that stump present-day computers, like finding the prime factors of a very large number. But in the coming decades, powerful quantum computers are expected to be able to rapidly solve some such problems, threatening the security of our online communications. To develop new methods that can withstand even the most sophisticated quantum computer, cryptographers are using a wide range of mathematical tools, many of which were originally developed without any real-life applications in mind.

Jul 6, 2021 • 18min
Taking the "Temperature" of Languages
Ricardo Bermudez-Otero and Tobias Galla discuss the mathematics describing the evolution of human languages.
The sounds and structures of the world's approximately 7,000 languages never stop changing. Just compare the English in Romeo and Juliet or the Spanish in Don Quixote to the modern forms. But historical records give an incomplete view of language evolution. Increasingly, linguists draw upon mathematical models to figure out which features of a language change often and which ones change more rarely over the course of thousands of years. A new model inspired by physics assigns a "temperature" to many sounds and grammatical structures. Features with higher temperatures are less stable, so they change more often as time goes on. The linguistic thermometer will help researchers reconstruct how our languages came to be, and how they might change in future generations.

May 24, 2021 • 11min
Doing the Math
Math may sometimes seem as if it's comprised of countless meaningless unconnected exercises, but in reality, it's much more. It's figuring out how to do something, and, even better, why something works the way it does. The math you're doing now can open doors for you so that you can answer deep questions yourself about a subject or idea that you're interested in. Give those questions a shot and perhaps someday also help others solve their problems. Five mathematicians (Alexander Diaz-Lopez, Trachette Jackson, Francis Su, Erika Tatiana Camacho, and Deanna Haunsperger) talk about what mathematics means to them.

Apr 26, 2021 • 15min
Making Room for Patients
We've seen that the availability of hospital beds is important during a pandemic, and it's important during normal times as well. Whether it's for emergency medical help or for a scheduled procedure (for example, chemotherapy), access to hospital space, staff, and equipment can be a matter of life and death. Mathematics helps medical center staff manage their resources more efficiently so that they are available when needed. An optimization technique called integer programming is used along with tools from statistics, probability, and machine learning to create better schedules for operating rooms, treatment centers, and the people who staff them. David Scheinker talks about the mathematics involved in hospital operations.

Mar 22, 2021 • 18min
Fighting Fires
In many places, fire seasons keep getting longer with larger and ever more destructive wildfires. Teams of mathematicians, computer scientists, meteorologists, and firefighters are working to reduce the number of large fires before they happen and to contain those that do occur. Mark Finney talks about the math involved in modeling and fighting wildfires.