Oncotarget cover image

Oncotarget

Latest episodes

undefined
Apr 22, 2025 • 7min

New Insights into p53: A Powerful Gene’s Role in Cancer Therapy

A new study from the Sidney Kimmel Comprehensive Cancer Center and Johns Hopkins University School of Medicine, published in Oncotarget, reveals that the gene p53, long known as the “guardian of the genome,” may be even more powerful than previously thought. By studying it in non-cancerous human cells, researchers discovered how p53 stops risky cell growth and uncovered two new potential targets for cancer therapy. Understanding p53: The Genome’s Guardian Against Cancer The p53 gene is one of the most important natural defenses our body has against cancer. When functioning properly, p53 detects damage in a cell’s DNA and either stops the cell from dividing or pushes it to self-destruct. This process helps prevent potentially dangerous mutations from spreading. However, many cancers find ways to silence or mutate p53, allowing uncontrolled growth and resistance to treatments. Studying p53 in a clear and accurate way has long been a challenge. Most cancer cell models used in research already carry numerous genetic mutations, which can mask or alter how p53 truly functions. To fully understand this vital tumor-suppressing gene, scientists needed a model that closely resembled healthy, genetically stable human cells—yet could still be maintained and studied over time in the laboratory. The Study: Exploring p53 in Normal and Cancer Cell Models Researchers Jessica J. Miciak, Lucy Petrova, Rhythm Sajwan, Aditya Pandya, Mikayla Deckard, Andrew J. Munoz, and Fred Bunz explored p53 activity using a uniquely suitable cell line: hTERT-RPE1. These non-cancerous human cells are immortalized using telomerase, meaning they continue dividing like cancer cells, but without the chaotic mutations seen in tumors. This makes them an excellent model for studying how p53 operates in near-normal conditions. Full blog - https://www.oncotarget.org/2025/04/22/new-insights-into-p53-a-powerful-genes-role-in-cancer-therapy/ Paper DOI - https://doi.org/10.18632/oncotarget.28690 Correspondence to - Fred Bunz - fredbunz@jhmi.edu Video short - https://www.youtube.com/watch?v=Psxj3ctbTuk Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28690 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, p53, ionizing radiation, immortalized cells, ALDH3A1, NECTIN4 About Oncotarget Oncotarget (a primarily oncology-focused, peer-reviewed, open access journal) aims to maximize research impact through insightful peer-review; eliminate borders between specialties by linking different fields of oncology, cancer research and biomedical sciences; and foster application of basic and clinical science. Oncotarget is indexed and archived by PubMed/Medline, PubMed Central, Scopus, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science). To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
undefined
Apr 15, 2025 • 5min

Gene Variant Linked to Benign Prostate Hyperplasia Risk in Lebanese Men

BUFFALO, NY - April 15, 2025 – A new #research paper was #published in Oncotarget, Volume 16, on April 4, 2025, titled “Association between two single nucleotide polymorphisms of the Prostaglandin-Endoperoxide Synthase 1 and 2 genes and cell proliferative prostatic diseases in Lebanon." The team of researchers led by first author Brock J. Sheehan and corresponding author Ruhul H. Kuddus, from Utah Valley University, discovered that a specific genetic variation in the PTGS2 gene is associated with a higher risk of benign prostate hyperplasia (BPH), a common condition in aging men. The study, which focused on Lebanese men, suggests that the C allele of the -765 G>C polymorphism in the PTGS2 gene may increase risk to this non-cancerous but problematic prostate condition. This finding could help identify men at greater risk earlier and lead to better treatment choices. Benign prostate hyperplasia and prostate cancer are two common conditions that involve abnormal cell growth in the prostate gland. While prostate cancer is malignant and potentially life-threatening, BPH is a non-cancerous enlargement that can still significantly affect quality of life. Both conditions are widespread in older men, with BPH affecting over 70% of men above 60. Researchers have long suspected that inflammation-related genes may play a role in their development. In this study, the focus was to study PTGS1 and PTGS2, genes that help produce enzymes involved in inflammation. Using DNA samples from 168 Lebanese men, including 61 with prostate cancer, 51 with BPH, and 56 healthy controls, the researchers analyzed two common gene variants. They found no link between the PTGS1 variant and either condition. However, the PTGS2 variant showed a strong association with BPH. Men carrying the C version of this gene were more than twice as likely to have BPH compared to those without it. While a similar trend was observed in men with prostate cancer, the results were less conclusive. "The C allele of SNP-765G>C of the PTGS2 gene was significantly associated with an increased risk of BPH (OR = 2.30, p-value = 0.01)." This is the first study to report a genetic link between the C allele of the -765 G>C polymorphism in the PTGS2 gene and BPH in Lebanese men. It builds on earlier findings that associated this gene variant with various cancers, including prostate, colon, and stomach cancers. Although based on a relatively small and specific population, the study offers new insight that could help improve genetic screening and guide prevention strategies. The research also points to the potential benefits of COX-2 inhibitors—drugs already used to treat prostate conditions—which may be more effective for men with certain PTGS2 gene types. Further studies in larger and more diverse groups are needed to confirm these results and explore how this gene variant influences prostate disease. In the future, simple genetic tests could help identify men at higher risk before symptoms appear, allowing for earlier and more personalized care. Continue reading: DOI: https://doi.org/10.18632/oncotarget.28710 Correspondence to: Ruhul H. Kuddus — ruhul.kuddus@uvu.edu Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
undefined
Apr 11, 2025 • 4min

Protein GSK3β Offers New Angle on Overcoming Melanoma Drug Resistance

BUFFALO, NY - April 11, 2025 – A new research perspective was published in Oncotarget, Volume 16, on April 4, 2025, titled “GSK3β activation is a key driver of resistance to Raf inhibition in BRAF mutant melanoma cells." In this work, first author Diana Crisan and corresponding author Abhijit Basu from the University Hospital Ulm led a team that presents experimental evidence pointing to the protein GSK3β as a key contributor to drug resistance in melanoma. Their findings suggest that GSK3β becomes increasingly active in cancer cells during treatment, helping them survive and adapt despite ongoing therapy with BRAF inhibitors. Melanoma is a type of skin cancer in which nearly half of patients have mutations in the BRAF gene that accelerate tumor growth. While treatments targeting BRAF, known as BRAF inhibitors, initially work well, tumors often find ways to fight back. This research perspective explores how GSK3β, a protein involved in metabolism and cell survival, becomes more active in melanoma cells that develop resistance to BRAF inhibitors. Researchers treated melanoma cells with a common BRAF mutation using Dabrafenib, a widely used BRAF inhibitor. Over time, the cancer cells developed resistance and showed a marked increase in GSK3β levels. This pattern was confirmed across multiple melanoma cell models, suggesting that the finding is consistent and reliable. Importantly, the researchers observed that treating resistant cancer cells with a GSK3β inhibitor significantly reduced their growth. This result suggests that blocking this protein could restore sensitivity to treatment, highlighting GSK3β as a promising therapeutic target and supporting the idea of combining GSK3β inhibitors with existing melanoma therapies. “Remarkably, treatment of BRAFi-resistant melanoma cells with the GSK3 inhibitor LY2090314 for three weeks could overcome resistance and significantly decreased melanoma cell growth, confirming the causal role of GSK3 activation for BRAFi resistance development.” The research perspective adds to ongoing efforts to understand and overcome melanoma drug resistance. It shows that resistance is not driven only by genetic mutations but may also involve adaptive changes in the cell’s internal signaling and survival mechanisms. By identifying GSK3β as a potential contributor, the authors offer a new direction for improving the durability of targeted treatments in melanoma. As research continues, GSK3β may be a critical factor in the long-term success of melanoma therapy, particularly for patients who have stopped responding to standard BRAF-targeted drugs. Continue reading: DOI: https://doi.org/10.18632/oncotarget.28711 Correspondence to: Abhijit Basu — abhijit.basu@alumni.uni-ulm.de Video short - https://www.youtube.com/watch?v=G2Tq4_r6xLw Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ About Oncotarget Oncotarget (a primarily oncology-focused, peer-reviewed, open access journal) aims to maximize research impact through insightful peer-review; eliminate borders between specialties by linking different fields of oncology, cancer research and biomedical sciences; and foster application of basic and clinical science. Oncotarget is indexed and archived by PubMed/Medline, PubMed Central, Scopus, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science). To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
undefined
Apr 9, 2025 • 6min

Targeting SETDB1: A New Strategy for Treating Osteosarcoma

Despite decades of research, treatment for osteosarcoma has remained largely unchanged, especially for patients whose cancer spreads or returns. However, a growing body of evidence, summarized in the review “SETDB1 amplification in osteosarcomas: Insights from its role in healthy tissues and other cancer types,” published in Oncotarget, highlights the gene regulator SETDB1 as a potential key player in cancer progression, immune system evasion, and resistance to therapy. Targeting this protein may offer a new direction for developing more effective treatments. Understanding Osteosarcoma Osteosarcoma is a rare but aggressive bone cancer that primarily affects teenagers and young adults. While current treatments like surgery and chemotherapy can help some patients, outcomes are much worse for those with relapsed or advanced disease. One of the reasons osteosarcomas are so difficult to treat is their complex and unstable genetics. Unlike cancers with well-defined mutations, osteosarcomas involve chaotic DNA rearrangements, making it difficult to identify precise drug targets. Adding to the challenge, the immune system often fails to recognize these cancer cells, limiting the success of immunotherapy. Full blog - https://www.oncotarget.org/2025/04/09/targeting-setdb1-a-new-strategy-for-treating-osteosarcoma/ Paper DOI - https://doi.org/10.18632/oncotarget.28688 Correspondence to - Antonin Marchais - antonin.marchais@gustaveroussy.fr, and Maria Eugenia Marques Da Costa - jenny.marquescosta@gustaveroussy.fr Video short - https://www.youtube.com/watch?v=f9WgaDoEubs Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28688 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, SETDB1, cancer epigenetics, tumor immunogenicity, mesenchymal differentiation in osteosarcoma About Oncotarget Oncotarget (a primarily oncology-focused, peer-reviewed, open access journal) aims to maximize research impact through insightful peer-review; eliminate borders between specialties by linking different fields of oncology, cancer research and biomedical sciences; and foster application of basic and clinical science. Oncotarget is indexed and archived by PubMed/Medline, PubMed Central, Scopus, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science). To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
undefined
Apr 5, 2025 • 4min

AI That Measures Its Own Uncertainty Could Improve Liver Cancer Detection

BUFFALO, NY - April 8, 2025 – A new #editorial was #published in Oncotarget, Volume 16, on April 4, 2025, titled “Deep learning-based uncertainty quantification for quality assurance in hepatobiliary imaging-based techniques." Dr. Yashbir Singh from Mayo Clinic and his colleagues discussed how artificial intelligence (AI) can improve liver imaging by recognizing when it might be wrong. This approach, called “uncertainty quantification,” helps clinicians better detect liver cancer and other diseases by pointing out areas in medical scans that need a second look. The authors explain how these AI tools could make imaging results more accurate and reliable, which is especially important when diagnosing serious conditions like liver tumors. Liver and bile duct imaging is difficult because of the organ’s complex structure and differences in image quality. Even skilled radiologists can struggle to identify small or hidden tumors, especially in patients with liver damage or scarring. The editorial explains how new AI models not only read medical images but also measure their own confidence. When the AI system is unsure, it can alert clinicians to take a closer look. This extra layer of information can reduce missed diagnoses and improve early detection of liver cancer. One of the most advanced tools described in the editorial is called AHUNet (Anisotropic Hybrid Network). This AI model works with both 2D and 3D images and can highlight which parts of a scan it is most confident about. It performed well when measuring the entire liver and showed how its confidence dropped when scanning smaller or multiple lesions. This feature helps clinicians know when more testing or review is needed. The authors also looked at other AI models used in liver imaging. Some tools were able to analyze liver fat using ultrasound images and give clinicians both a result and a confidence score. Others improved the speed and accuracy of liver magnetic resonance imaging (MRI) scans, helping to create clear images in less time. These advancements could help hospitals work faster and provide better care. The editorial highlights how this technology can be especially helpful in smaller clinics. If they do not have liver specialists, they could still use AI systems that flag uncertain results and send them to larger centers for review. Such an approach could improve care in rural or less-resourced areas. “Radiology departments should develop standardized reporting templates that incorporate uncertainty metrics alongside traditional imaging findings.” By using AI tools that know when to second-guess themselves, clinicians may soon have more reliable methods for detecting liver cancer and monitoring liver disease. The authors suggest that uncertainty-aware AI may soon become a vital part of everyday medical imaging, supporting faster and more accurate decisions in liver disease care. DOI: https://doi.org/10.18632/oncotarget.28709 Correspondence to: Yashbir Singh — singh.yashbir@mayo.edu Video short - https://www.youtube.com/watch?v=Zm0QASQ_YSI Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28709 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords: cancer, deep learning, uncertainty quantification, radiology, hepatobiliary imaging To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh Media Contact MEDIA@IMPACTJOURNALS.COM 18009220957
undefined
5 snips
Apr 3, 2025 • 4min

Triple Therapy Slows Glioblastoma Growth and Extends Survival in Preclinical Study

A groundbreaking study reveals a promising triple therapy for glioblastoma, combining new imipridones with traditional treatments. This innovative approach significantly slows tumor growth and extends survival in mouse models. Researchers are excited about the potential to improve outcomes for patients facing this aggressive brain cancer. The synergy between the new drugs and existing therapies opens up new possibilities in treatment, challenging the limitations of current glioblastoma care.
undefined
Mar 26, 2025 • 4min

Single Protein Mimics Retinoic Acid Therapy to Help Leukemia Cells Mature

A groundbreaking discovery reveals the FGR protein's surprising ability to help leukemia cells mature, echoing the effects of retinoic acid therapy. Traditionally seen as a cancer promoter, FGR's new role opens exciting possibilities for treating acute myeloid leukemia. The research shows that simply introducing FGR prompts the cells to produce key maturation markers and shifts their behavior. This innovative finding could pave the way for novel therapies, especially for cases resistant to conventional treatments.
undefined
Mar 25, 2025 • 5min

NSD2 Gene Drives Cancer Cell Identity in Multiple Myeloma

Explore the intriguing role of the NSD2 gene in maintaining the identity of multiple myeloma cells as plasma cells. Researchers delve into how NSD2 influences gene activity, offering new perspectives on treatment for high-risk t(4;14) myeloma. They compare myeloma cells with varying NSD2 activity and uncover significant changes in DNA folding and gene expression. This groundbreaking study could lead to innovative strategies for tackling this challenging form of blood cancer.
undefined
4 snips
Mar 25, 2025 • 5min

When the Cure Becomes the Cause: A Rare Case of Cancer from Donor Cells

A young woman triumphs over leukemia, only to be confronted with another blood cancer stemming from her bone marrow transplant. This rare case raises crucial questions about the long-term risks of donor cells and the importance of rigorous donor screening. Experts discuss the complexity of hematopoietic stem cell transplants and the unexpected emergence of donor cell–derived hematologic neoplasms. The conversation sheds light on the delicate balance between life-saving treatments and potential long-term complications.
undefined
Mar 24, 2025 • 4min

Why Some Breast Cancer Treatments Stop Working

Discover why some breast cancer treatments stop working and the critical role of signaling pathways. Researchers reveal how mutations and altered cell communication support tumor survival and resistance. Key pathways like PI3K/Akt/mTOR and HER2 are discussed, shedding light on their impact on treatment response. The insights aim to enhance understanding and pave the way for novel therapeutic strategies. Tune in for an eye-opening exploration of the challenges in treating this prevalent cancer!

Remember Everything You Learn from Podcasts

Save insights instantly, chat with episodes, and build lasting knowledge - all powered by AI.
App store bannerPlay store banner