Faster, Please! — The Podcast

James Pethokoukis
undefined
Sep 14, 2023 • 32min

🌎 My chat (+transcript) with climate scientist Zeke Hausfather

Is climate change an impending existential threat, or a serious but manageable problem we can tackle with innovation and human ingenuity? Zeke Hausfather joins this episode of Faster, Please! — The Podcast to explain the basics of climate modeling and give a clear-eyed assessment of the risks we face and the measures we can take.Zeke is a climate scientist and energy systems analyst. He is the climate research lead for Stripe and a research scientist at Berkeley Earth.In This Episode* Human impact on the climate (1:11)* Global temperature forecasting (6:33)* Low-probability, high-risk scenarios (15:07)* Reducing carbon emissions (17:06)* Carbon capture and carbon removal (25:25)Below is an edited transcript of our conversationFaster, Please! is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber. Thanks!Human impact on the climateJames Pethokoukis: How do we know that our planet is warming? And secondarily, how do we know the actions of people are playing a key role?Zeke Hausfather: That's a great question. In terms of how we know it's warming: We've been monitoring the Earth's climate with reasonably dense measurements since the mid-1800s. That's when groups like NASA, NOAA, the UK Hadley Centre, my own Berkeley Earth group, have been able to put together reliable global surface temperature estimates. And we've seen in the period…That's since the 1980s?1850.1850. NASA was not around in 1850.No. But enough measurements were being taken both at weather stations around the world and on ships in the oceans that we can reconstruct global temperatures with an accuracy of a couple tenths of a degree going back that far. We know that the world has warmed by about 1.2 degrees centigrade since 1850 with the vast majority of that warming, about 1 degree of it, happening since 1970. That isn't in much dispute in the scientific community at all. Now, going further back is harder, obviously. We only invented the thermometer in the early 1700s. There are a few locations on land that go back that far, but to go back further in time, we need to rely on what we call climate proxies: things like ice cores, tree rings, coral sediments, pollen in lakes — various natural factors that are in some way related to the temperature when those things occurred.Those have much higher uncertainties, of course, but we do know using those reconstructions that current temperature levels are probably unprecedented in at least the last 2000 years and are at the high end of anything we've seen in the last 120,000 years or so. Certainly if current temperatures were to stay at today's levels for another century, they'd be higher than anything we've seen in 120,000 years. But it's harder to precisely make those claims because the time resolution of these indirect proxy measurements is very coarse when we go back further in time. You might have one ice core measurement reflect a hundred-year average period, for example, rather than a specific year. We know from the temperature record that the world has warmed. How do we know that human activity is playing a role? Well, we've known since the mid-1800s, due to pioneering work by folks like John Tyndall or Arrhenius, that carbon dioxide is a greenhouse gas and that greenhouse gases like carbon dioxide, water vapor, methane are critical to maintain a habitable planet. Without greenhouse gases in our atmosphere, the Earth would be a snowball and life would probably not exist.We also know that the amount of carbon dioxide in the atmosphere has increased pretty dramatically. We have measurements from ice cores going back about 800,000 years of carbon dioxide in the atmosphere at a reasonably high resolution. And because carbon dioxide is well mixed, knowing it in one location in one ice core gives us a good picture of carbon dioxide for the whole planet. And we know that prior to the year 1850, carbon dioxide concentrations in the atmosphere varied between about 170 to 280 parts per million. They're lower during ice age periods; they're higher during warmer interglacial periods. But since the 1850s, that value has increased dramatically. The amount of carbon dioxide in the atmosphere has increased by about 50 percent. It's gone from 280 parts per million, which was over the last 10,000 years since the end of the last ice age, up to about 420 parts per million today.And that reflects a huge amount of carbon dioxide in the atmosphere. I don't think people realize quite the magnitude we're talking about. The amount of carbon dioxide that humans have added to the atmosphere by digging up stuff from underground and burning it is roughly equal in mass to the entire biosphere. We took every single bit of life on Earth and burned it. That was about how much CO2 we put up in the atmosphere since the Industrial Revolution. Or to put it another way, it's equal in mass to all of everything humans have ever built: the pyramids, every skyscraper, every road. We took all that mass and put it up into the atmosphere. That's the amount of CO2 we've emitted. And so that's had a pretty big effect on what we call the radiative forcing of our climate, essentially the amount of outgoing longwave radiation — or heat, in common parlance — that gets absorbed and reradiated back toward the surface. And the estimate…That’s the key mechanism we're talking about here, right?Yeah. Sunlight comes in from the sun, which provides pretty much all the Earth's energy. It gets absorbed by the surface of the Earth and reradiated as heat. That heat goes back out to space. Ideally, those two things should be an equilibrium: The amount of energy entering the Earth system matches the amount that leaves the Earth system, and the Earth stays a happy, healthy temperature. What we've seen in the last century, and we can verify this over the last few decades directly through satellite observations, is the amount of heat entering the Earth system is larger than the amount of heat leaving the Earth system. So the Earth is out of thermal equilibrium and is heating up. Most of that heat is going into the oceans, about 90 percent of it. But about 10 percent of that heat that's trapped goes into the atmosphere, and that's responsible for the warming we've seen.The climate is a hugely complex system, and when you're trying to project the response of the climate to our emissions, you're dealing with a lot of uncertainty around what we call feedbacks in the climate system.Global temperature forecastingLooking forward, various climate models, which is what we use to forecast what's going to happen next, look at what we've already put into the atmosphere and what we're continuing to put into the atmosphere, and they make a forecast about how that will impact temperatures going forward. Do I have that part right?Yep.Okay. So based on what these models are saying, what is reasonable to expect in coming decades as far as temperature increases and their impacts?The amount of future warming we end up having depends largely on how much CO2 and other greenhouse gases we emit. If we keep emissions roughly at current levels for the rest of the century — we're emitting about 40 billion tons of CO2 per year — if we keep that steady, we don't increase it at all, we expect somewhere in the range of 3 degrees centigrade warming by the end of the century, so that would be a bit above 5 degrees Fahrenheit warming globally, relative to the pre-industrial period or 1850. We've already experienced 1.2 degrees C. We'd have another 1.8 degrees C or so on top of that by the end of the century. If we emit more, it could be higher than that. If we emit less, it could be lower than that.That said, that's sort of the average estimate across the 40 different modeling centers around the world that do these sort of exercises. In reality, the climate is a hugely complex system, and when you're trying to project the response of the climate to our emissions, you're dealing with a lot of uncertainty around what we call feedbacks in the climate system. As an example: As we warm the surface, we get more evaporation and the atmosphere can hold more water vapor before rain falls out as the air is warmer. This is a fairly well-known physical relationship. And so for every degree of warming, you get about 7 percent more water vapor in the atmosphere. Now, water vapor itself is a greenhouse gas, and so that enhances the warming the world experiences. Because it's warmer, that water vapor can stay in the atmosphere — because usually the water vapor itself is very, very short-lived and can't force the climate by itself because it just rains out if you get too much.There are also uncertainties in how clouds respond to our emissions. More water vapor in the atmosphere leads to more cloud formation in some regions. Higher temperatures and changing wind patterns lead to changing cloud dynamics. Our emissions of other things like aerosols, small particles from burning fossil fuels also affect cloud formation. And how that all pans out and how those clouds change the balance of heat trapped versus heat reflected varies a lot across models. And for all these reasons, we like to give a range of what we call climate sensitivity, which is essentially, how sensitive is the climate to our emissions? And we usually define that as, if we double the amount of CO2 in the atmosphere — which is roughly what we're on track for by the end of the century today, we've already increased it by 50 percent — how much warming do we get at equilibrium? And that value is generally around three degrees C per doubling of CO2, but with a pretty wide range. In the most recent IPCC report, we said it could be anywhere from 2.5 degrees C at the low end of the likely range to about 4 degrees at the high end, 2 degrees to 5 degrees is the sort of very likely range that we gave in the most recent IPCC report.I recently watched an Apple TV+ miniseries called Extrapolations, and it looked at climate change and how it would affect us over the entire century. That was the number they really fixated on: 3 degrees Celsius. The environment they showed was pretty chaotic: lots of very, very bad heat waves, hurricanes, flooding. Civilization wasn't going to get wiped out or anything, but it seemed pretty nasty. So are we talking kind of really nasty climate effects from three degrees of warming Celsius?When we say 3 degrees, it sounds like a very small number, especially to us Americans are used to talking about things in Fahrenheit. But even when we think about the temperature from day to day, it might change, let's say 5.5 degrees Fahrenheit tomorrow, and that's noticeably warmer; 5.5 degrees Fahrenheit is the difference between 85 degrees and a bit above 90 degrees, but it doesn't sound huge. But the problem is, that's a global average number and no one lives in the global average. In fact, the global average is mostly the ocean. It turns out that where people do live, on land, is warming about 50 percent faster than the world as a whole. So if we talk about 3 degrees centigrade — or let's talk Fahrenheit for a moment, let's say 5.5 degrees Fahrenheit — over land, increase that by 50 percent, so let's say 8 degrees Fahrenheit globally over land where we all live. Even higher than that in high-latitude regions like the Arctic. We have bigger feedbacks associated with snow melting and exposing darker surfaces, so some regions are going to see really big changes.To put this number in perspective, the last ice age, which I think everyone would acknowledge was a very different planet than we have today, was only about 6 degrees centigrade colder than current temperatures globally. Obviously it was much colder in the northern latitudes, which were covered by ice sheets, but the tropics were not that much colder. And so it averages to about 6 degrees difference. So that would have impacts. Exactly what those impacts would be depends a lot on the systems we're talking about and the adaptive capacity of those systems. The natural world, I think in many ways, is going to be the worst hit by these changes. There are a lot of plant and animal species that live in fairly narrow ecological niches. And particularly in a world that's very fragmented by roads and human habitation, it's a lot harder for those plant and animal species to migrate to more temperate regions to be able to survive. So certainly there's a concern around large-scale extinction of many plant and animal species that can no longer live in the ecological niches that they've adapted to over the last tens of thousands of years and can't migrate quickly enough to adapt to that.In terms of impacts to human systems, there's a lot of different impacts from climate change and the degree to which those are catastrophic is going to depend a lot on how wealthy we are and how well we can adapt to it. If by the end of the century we're in a world that's similar to today, that has huge amounts of inequality with billions of people living at a dollar a day, I would worry a lot about the ability of people in those societies to adapt to more widespread extreme heat events, larger floods associated with more water vapor in the atmosphere, sea level rise, some of these other impacts. If we live in a world where we're all very wealthy and relatively equal on a country-by-country basis and within countries, then we have a much bigger ability to build sea walls, to have air conditioning inside, to genetically engineer crops to be more heat tolerance, the many other ways that humans can adapt to these changes. And so I think in many ways I see climate change less as an existential risk by itself and more as an existential risk multiplier. If we are in a world of weak institutions, of failing governments, of high inequality, I see climate as something that could help push societies over the edge. But I don't necessarily think at least a 3-degree world would be one that is the end of civilization by any stretch of the imagination, if we get our act together on these other issues.What is what you described as what is sort of the “business as usual” forecast, and then what is the, we really get serious about policy, and we can talk about what those policies are, that reduce carbon emissions?The good news is “business as usual” has already been changing a fair bit. Nowadays, it looks like business as usual is global emissions staying relatively flat. A decade ago, it seemed like doubling or tripling global emissions by the end of the century would not be out of the question. Certainly if you extrapolated the trends from previous decades, that's where we were headed. Nowadays, global coal use has largely plateaued and arguably is going to shrink in coming years. We have cheaper alternatives. Electric vehicles are taking off. There are many other technologies that are being developed and becoming increasingly cheap. And so it's harder to imagine a world where we're still burning massive amounts of coal, oil, and gas in 2100.We can reduce emissions, we can develop new technologies, and we can get them widely adopted. And if we do that and if we get emissions to zero by, say, 2070 or so globally, then we limit warming to below 2 degrees.Low-probability, high-risk scenariosDoes that make the very worst-case scenarios that maybe we were talking about a decade ago just highly unlikely?It certainly makes the worst-case emission outcomes highly unlikely. If we look at 3 degrees, for example, that could really end up anywhere between 2 degrees and above 4 degrees if we get unlucky because of the uncertainty in how the climate system responds to our emissions, because the Earth is such a complex system. Climate change is both planning for the central outcome but also trying to mitigate those risks. In some ways, we want to reduce emissions not just to get that mean down, but also as an insurance policy against the 5 or 10 percent more catastrophic potential outcomes there. I don't think we're necessarily completely out of the woods on a 4 C world by the end of the century if we roll sixes on all the proverbial climate dice, but I think we have made a lot of progress in making those outcomes less likely.Today we're headed toward, as I mentioned earlier, about 3 degrees of warming if emissions stay relatively constant, or a little bit below 3 degrees. But we can do much better than that. We can reduce emissions, we can develop new technologies, and we can get them widely adopted. And if we do that and if we get emissions to zero by, say, 2070 or so globally, then we limit warming to below 2 degrees. If we get emissions to zero by 2050, which is going to be a much harder lift given the amount of infrastructure in place today that relies on fossil fuels, then we could limit warming to maybe about 1.6 or 1.7 degrees. And if we build lots of machines to remove carbon from the atmosphere, plant lots of trees, do other things to actually get negative emissions, models suggest we could get temperatures down to 1.5 degrees, only 0.3 degrees above where we are today, by the end of the century.We are really on this acceleration of private sector and government spending on these technologies. But I think government does play a role here. I think most economists would acknowledge that what we're dealing with here is an externality. Reducing carbon emissionsWhen I look at what our responses might be, I tend to think, what will happen to emissions in a world where our responses will be constrained by our low collective tolerance for suffering and pain and deprivation and sacrifice? To me, that's a pretty important constraint. If there's one lesson I think we learned from the pandemic, it’s people don't like shortages. We don't like to rough it in any way. In a world where, at least in the West, that's our attitude, how do we get emissions down in a somewhat timely manner?I think a lot of it relies both on the combination of human ingenuity and governments playing a role in catalyzing that ingenuity and allowing these technologies to scale. We've seen the biggest successes in mitigating climate change in technologies that slot in nicely to replace things that we enjoy today. We don't talk about it much, but Texas is the renewable energy capital of the US today, because it's cheaper to generate electricity with the wind and sun there than it is to burn coal and gas. Similarly, we've seen an explosion of electric vehicles in places like China and Europe, and the US is catching up, not necessarily because everyone there is a tree hugger, but because they're really fun to drive and they perform better and are lower cost in some cases than conventional vehicles. The more we can follow that model of developing new technologies that don't involve sacrifice, that don't involve necessarily giving up things we enjoy today, I think the more successful we're going to be.And that's led to a lot of money being spent on these things. In the last year, the globe spent about $1.1 trillion on mitigation technologies: renewable energy, electric vehicles, nuclear power, heat pumps, all that sort of stuff. That's up from $200 million a year or so a decade before or 15 years before. And so we are really on this acceleration of private sector and government spending on these technologies. But I think government does play a role here. I think most economists would acknowledge that what we're dealing with here is an externality. And by an externality, I mean it's something that has a social cost, but no one individually pays for it when they put carbon dioxide or other emissions in the atmosphere. So there has to be some role of internalizing that externality, either through (as economists would like to do) a price on carbon, or in a world where you can't do that for many reasons, subsidizing the good stuff to essentially account for the benefits it has of displacing fossil fuels, both in terms of their affecting climate change, but also conventional pollution. I think we discount a lot, particularly living in a place like the US, which has done a lot of work on this, how disastrous fossil fuels are for public health. There's somewhere in the range of a couple million people dying prematurely globally from pollution, particularly outdoor air pollution. And if you go to a place like India or China and walk around outside, it's pretty catastrophic some days in terms of the brown soup that is the air. We get a lot of co-benefits by cleaning up these conventional pollutants, particularly in places like Southeast Asia or South Asia, as well as reducing emissions of greenhouse gases.Reducing emissions, going to zero emissions, pulling emissions out of the air: Do these scenarios work with just renewable energy sources or is this a world that's using nuclear energy in some form far more than we currently are?So I think we necessarily need a variety of energy sources here, and there's been a lot of work done in recent years by the energy modeling community on this front. Renewables are great. Solar is super, super cheap; to be honest, a lot cheaper today than any of us thought it would be a couple decades ago. Wind is increasingly cheap. But they're also intermittent. The sun doesn't shine all the time; the wind doesn't blow all the time. Batteries are part of the solution to deal with that, but they're not a perfect solution. We tend to find that you get a much lower cost in scenarios where you also have a sizable chunk, maybe 20, 30, 40 percent, of your energy coming from what we call clean firm generation. Things like nuclear, like enhanced geothermal, potentially fossil fuels with carbon capture and storage, though those have some challenges in implementation, to support large amounts of renewable energy on the grid.You end up with a much more expensive system if you try to shoehorn in 100 percent renewables, and to be honest, it's pretty unnecessary. So I think we are going to see, and we're already starting to see, bigger investments in things like next-generation nuclear. I think we just need to figure out how to build them on time and on budget. The biggest problem with the nuclear industry in the US — certainly regulations have contributed to it — but I think it's just our inability to build these giant, bespoke megaprojects. Nuclear goes super over budget for the same reason the “Big Dig” in Boston does: You have this 10-year-long, many, many billion-dollar megaproject that has construction delays and all these other problems. The more we can learn from what renewables have gotten right, make things small, modular, pumped out in an assembly line, and less contingent on these giant construction projects, I think the better outcomes we'll see for things like nuclear.There's an economist, he passed fairly recently, Martin Weitzman from Harvard, and he wrote about the economics of climate change. And there's one quote that always sticks in my mind. He wrote that “Deep structural uncertainty about the unknown unknowns of what might go very wrong [with the climate] is coupled with essentially unlimited downside liability on possible planetary damages” and a “non-negligible” probability of a “collapse of planetary welfare.” He's talking about, you can't write off the possibility that we get some very bad outcomes. And I guess that's what worries me: If we're doing something to the atmosphere that we've never done before, what if the models are wrong and we get something really catastrophic, that really becomes a true existential risk? How much should I worry about that?I think we're all worried about unknown unknowns. For me, the odds of those happening, which are somewhat unknowable by definition, increase the more we push the Earth out of the climate we've seen for the past few million years. Right now we're around the range of what we saw in the Last Interglacial Period, about 120,000 years ago. If we get temperatures up to 3 degrees centigrade globally, we will be out of the range of anything we've seen for the last two million years or so, if not further back. And we know if we go further back into the Earth's history, there's some scary stuff back there. There are periods where we see very rapid increases of temperature associated with 90 percent extinction of all life on Earth, like the Paleocene/Eocene Thermal Maximum. And we don't have great explanations for all these things. A good example is, for warmer periods in the Earth’s past, we think there's a mechanism where if temperatures get high enough, maybe 5 degrees above where they were in the pre-industrial period or a bit above 4 degrees above where we are today, suddenly all the stratocumulus cloud decks that cover much of the Earth's oceans disappear. And that leads to another 4 degrees warming on top of that. That sort of behavior seems to help explain some of these rapid warming events in the Earth's more distant past.Now, we think we're pretty far from experiencing something of that today. But maybe our models are wrong, or maybe the Earth is much more sensitive than we think. And again, rolling sort of sixes on the climate sensitivity and carbon cycle feedback dice leads us into those sorts of conditions. And so Marty Weitzman, who I did have the pleasure of knowing before he passed, had a great phrase to sum up that quote, which is that “when it comes to climate change, this thing is in the tail,” which is a very nerdy way to put it: The tails of these probability distribution functions, the low-probability but high-impact events, are really what should drive a lot of our concern around this and push us to reduce emissions more than we otherwise would if we were just planning for the most likely outcome.But whenever we talk about carbon dioxide removal, it is always important to emphasize that this stuff is expensive and it only makes sense to do at scale in a world where we're already cutting emissions dramatically. Carbon capture and carbon removalPeople will say, “What if the models are wrong?” and they assume they're only going to be wrong to the benefit of humanity. Maybe they're wrong to the detriment of humanity.We talked a little bit about reducing these emissions. You have carbon capture, where you pull it out of the air. How close is that technology to being something that can scale?When we talk about carbon capture, that's often a different thing than when we talk about carbon removal. Carbon capture generally means taking an existing fossil fuel plant…That could be trees too, right?Yeah, but carbon capture is mostly taking an existing fossil fuel plant like a coal, oil, and gas plant, sticking a unit on that captures the carbon coming out of it, and putting that underground. And there's a lot of funding for that in the new Inflation Reduction Act. The record on that over the last few decades has been a bit mixed. It's been hard for folks to make the economics work in practice. It's really complicated technically, but a lot of folks are confident that we can get there with some of those technologies. If a coal plant with carbon capture is going to be cheaper than a nuclear plant or renewable plant is a separate question. And I'm a lot more skeptical on the economics of carbon capture there.Now, carbon dioxide removal is a slightly different thing. And there we're talking about technologies that don't stop emissions from coming out of a smokestack, but instead take carbon that's already in the atmosphere and pull it back out. And most of our models suggest that we are going to need a lot of that down the road, in part because we can't fully get rid of all of the emissions from all of the parts of our economy. And the real challenge with climate change, or what I like to call the “brutal math” of climate change is that as long as our emissions remain above zero, the Earth continues to warm. CO2 remains in the atmosphere for an extremely long period of time; it takes about 400,000 years to fully clear out a ton of fossil CO2 we emit today through natural processes. So we end up needing a lot of carbon removal to both balance out what we call residual emissions and potentially to deal with overshoot. If we figure out that we really don't want temperatures to go above 1.5 degrees, but they're headed toward 1.7, we're going to have to pull a bunch of carbon out of the atmosphere to bring temperatures back down. It's only a small part of the solution. Maybe 10 percent of the solution to climate change writ large is carbon dioxide removal. But for a problem as big as climate change, 10 percent still matters a lot since solar is probably 20 percent, electric vehicles are probably 20 percent, heat pumps might be 10 percent. And there's a lot of technologies people are developing to do that. Direct air capture is the one that gets a lot of press: the sort of big fans that suck carbon out of the air, though they're incredibly energy intensive. But there are a lot of ways that leverage natural processes as well. Planting trees is a good one, though it has a lot of challenges in keeping the carbon in those trees in a warming world, particularly as we see more wildfires, more pine bark beetle outbreaks that used to die in cold winter temperatures and don't anymore. And so it's hard to justify planting trees as a way of permanently taking carbon out of the atmosphere, but it's still quite valuable. There's also a lot of interesting work being done around using biomass to sequester carbon, so taking residues from commercial timber operations, burning them, and putting their carbon content underground. Something called BECCS, or bioenergy with carbon capture and storage, that a lot of people are excited about.Then there are other interesting ways to leverage the natural carbon cycle. For example, over long periods, the weathering of certain types of rocks like basalt or olivine drives a lot of atmospheric CO2 absorption over the course of millions of years. And so a lot of scientists are trying to figure out ways to speed that up. If you take rock dust and spread it on farm fields, it can help manage the pH of soils, it can add some nutrients. And it turns out that as that basalt dust weathers, it absorbs carbon to the atmosphere, it turns it into stable bicarbonate and then flows out to the ocean and eventually forms limestone on the bottom of the ocean. Stuff like that, or adding alkalinity directly to the ocean to counteract ocean acidification, can also lead to more CO2 uptake from the air, because the amount of carbon dioxide the ocean absorbs in the atmosphere depends on how acidic the surface level of the layers of the water are. Scientists are working on tons of different technologies here. And actually my day job these days with Stripe and Frontier is helping support companies to do that. So there's lots of exciting stuff there. But whenever we talk about carbon dioxide removal, it is always important to emphasize that this stuff is expensive and it only makes sense to do at scale in a world where we're already cutting emissions dramatically. If you keep burning fossil fuels willy-nilly and spend a ton of money on a bit of carbon dioxide removal, it's not going to make any difference.Why are you interested in this subject?I think it's an underexplored area. Certainly until the last few years, no one was really putting any money or resources into it at scale. And it's something that is going to have to be an important part of the solution in the next few decades, and so I think this is the decade that we should be spending resources to figure out what works and what can scale for decades to come. We probably should spend about 1 percent of the money we spend on reducing emissions, but historically we've been spending a lot less than that.And why are you also more broadly interested in the entire topic of climate change rather than, I don't know, tax policy or something?I come to it from a scientific background. I just find the Earth's climate fascinating. It's super complex. It's hard to fully understand. We've really made leaps and bounds in progress over the last few decades, but there's so much we still don't know. And so it's just a fascinating area from a scientific standpoint, but it's also one where the importance to the society is quite large. I try not to wade too much into the policy solutions to it, but certainly helping understand the likely impacts of our actions affects a lot of choices that policymakers and others make. There's no one right answer. To your question earlier, people debate renewables versus nuclear and all these other things. Knowing what the impacts of climate change are, what the risks are, and how we can actually get to certain outcomes based on our decisions, I feel like is really important to set the stage for people to use the science in the real world. And it's exciting to work in an area of science where there is a practical, real-world application of it. And not just studying one plant species that lives on top of one mountain in a remote part of the world. We're looking at these big questions that affect everyone over the next century. This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe
undefined
Sep 1, 2023 • 21min

🚀 Faster, Please! — The Podcast #35

As the cost to launch a rocket into orbit has come down over the past decade, a slew of startups have joined the emerging space economy. But is there enough business for all these companies? And what's the broad economic case for space? In this episode of Faster, Please! — The Podcast, I'm chatting about those questions and more with Michael Sheetz.Michael is a space reporter for CNBC where he also writes the "Investing in Space" newsletter.In This Episode* The business case for space (1:05)* SpaceX, Blue Origin, and the other players in space (4:03)* How much demand is there for space services? (10:15)* To the Moon and Mars (13:59)Below is an edited transcript of our conversationThe business case for spaceJames Pethokoukis: How do private companies intend on making money in space over the next decade?Michael Sheetz: The first and foremost way is the tried-and-true way when it comes to making money in space, which is providing communications data and other services back to people here on Earth. You're talking about communication systems like Starlink, which are the next generation of communication services that have been around, from the geo-communication satellites of decades prior. That's the primary, immediate way that people are making money right now in space. The second way that people are making money in space is by launching satellites for other customers: You're talking about the rocket business, the transportation business. You see stuff like OTVs, or orbital transfer vehicles. That's a way to deliver stuff into space.Then there's a third kind of newer way, which is just microgravity research in general. That's coming to the fore really in the last decade as NASA has really opened up the International Space Station as a testbed for commercial technologies and not just NASA's own technologies. And a lot of companies see that as really just a first foray into that ground. Some of them are trying to do it in their own way by sending capsules into orbit and bringing them back, not going to a space station. The other way is by sending it to a space station, and there are actually four or five major projects underway in the United States to build private space stations in orbit. Those are companies that are either working together or building their own solo units, and they're all just kind of vying for a future in which you don't just have one giant space station, because the International Space Station is huge, but instead of the ISS, you have lots of these little space stations that people can sign agreements with. Say a pharmaceutical company wants to test out a new drug in orbit, they'll sign a research agreement with a company that's going to fly them up there, test it out, fly it back down. They might have astronauts on board. They might not.The other way — this is the other kind of nascent sector — is the lunar infrastructure world, and that's all very much a new space race, if you will, because there's a geopolitical element there. We’ve got India, we have China both firmly in that mix. China has been arguably one of the most successful at landing on the Moon in the last decade. And NASA, instead of trying to fly themselves to the Moon for these cargo missions and research, they've actually gone to companies and said, “Hey, bid on these contracts, deliver services to us. We'll put our payloads onto your spacecraft, your lander, your rover, and then get it down to the Moon and either get us back data or even return materials.” But mostly just, “Let's try to figure out if we can actually make use of the water that's believed to be on the surface of the Moon.” And that's a really big key point: The first round in terms of trying to make use of the Moon is all about, can we harvest the resources that are on the lunar surface?SpaceX, Blue Origin, and the other players in spaceMuch of the conversation among regular people, to the extent they're aware of really what's going on, what you've just described so wonderfully, is SpaceX. Maybe they've heard of Jeff Bezos and Blue Origin. How far behind is Blue Origin of SpaceX? Do we have a feel for where that company is?I, at this point, wouldn't even put it as really a competition, because SpaceX is very much in a league of their own. Blue Origin has so dramatically taken a different approach to development, very much more akin to the aerospace and defense contractors of the past. It's fascinating because both companies are actually very similar sizes in terms of personnel, but SpaceX has taken this approach of, let's just get one win after the other and try to just break things a little bit at a time and keep pushing further that way. Whereas Blue Origin is taking the route of, we want everything to work the first go, the first launch, the first landing on the Moon, all these other nuances in there. And so far, SpaceX's strategy has been dominant. Now, the United States is not looking at United Launch Alliance, one of the existing providers for rocket launches, as its primary source of both getting astronauts and satellites in orbit, they're looking to SpaceX. There's a flipping of the head that's happened in the last decade.In this next decade, and even just in the next three to five years, it's a really critical point in Blue Origin's history where the company has been around longer than SpaceX, albeit they took a very different approach at the beginning and have taken a very different approach in recent years as well. But they need to show not just for the customers that they signed contracts for—such as United Launch Alliance, delivering engines for them, or different contractors like NASA, providing services to the Moon—they need to show that they can start delivering on those contracts and start actually competing. Maybe not head to head right away, but at least start to get some actual performance and execution as opposed to basically at this point saying, “Here's our grand architecture of everything that we want happen over the next 100 years,” which would be amazing. I can totally see where Jeff's vision for people in research laboratories and living in Lagrange points and all these kinds of things could happen. But you have to make some first inroads, and they haven't yet done that. It's a one-horse race right now.Since we've been talking about those two companies: Are the goals the same but the strategies and timelines different or are they fundamentally trying to achieve different things?They very much have distinct missions when you just look at how they think about where they're going, the trajectory of the company, the trajectory of the space industry writ large. They do have very similar fundamental steps that they have to achieve to get towards those missions. When you look at one of their main products at Blue Origin, for example, with their New Glenn rocket, you still have to do the same basics of, fly a satellite to orbit, land it a couple times successfully, start reusing it and show that you can reuse it efficiently. Those are all things that Falcon 9 did and now SpaceX is going to have to do with Starship as well. They both have similar incremental steps, even if their broader mission targets aren’t the same.I think one really interesting thing about where the space industry is at today is that it actually really isn't about just SpaceX versus Blue Origin, but it's also Rocket Lab. It's also Maxar. It’s also Planet. There are all these different pieces of the broader architecture that are in the space economy and they're all kind of vying for different revenue streams within the space economy. But when we talk about SpaceX and Blue Origin, and I think we might be kind of oversimplifying the industry just into launch and basic transportation as opposed to what it really is in a lot of ways, which is infrastructure. And that's the kind of holistic approach, when you think about the companies that are players in that, where you start actually seeing Rocket Lab just did their 40th electron launch. Yeah, it’s a small launch. No, it's not the same service as Falcon 9. But they've carved out a really important niche in that, and they're trying to use that to not just build a larger rocket, Neutron, but also build out a very strong space systems division and then provide services.Sort of like how SpaceX did with Starlink where they were like, “Look, we've got the rocket business down. Let's go find revenue sources.” The first one right off the bat was, “Let's get better internet service, broadband into hard-to-reach areas at low cost comparatively to years past, and we'll do it in a way that just really provides this holistic coverage: You can go anywhere in the world, plug it in, it will connect to one of our satellites.” As opposed to just the regional focus of past communication systems. I think one really important key aspect of where the industry is at today is the fact that there are all these different companies that may not have billionaire backers, but they have big investors behind them, they have big revenue coming in: Planet and Rocket Lab, we're talking about pulling over $100 million in revenue a year. That's not inconsequential. Maxar and the like and others are really trying to further establish themselves. I think of Iridium with their communication systems.There are all these different players that have their pieces of the overall industry. Some of them compete head-to-head, some of them don't. And I think that's where you start to see an industry that isn't at a little bit of, for lack of a better way of saying it, a single-fault failure situation, where if Elon Musk or Jeff Bezos loses interest in space or something worse happens to them, all of a sudden the US progress in space evaporates. That's not the case today, and I think that's the most actually exciting thing about where the broader space economy is at.How much demand is there for space services?Is there enough business for all these companies? Are there enough people who want to put things in space and do things in space to justify this archipelago of companies that you've just described, or do people talk about [how] there's going to need to be a shakeout? Or is it just that there's so much potential demand, boy, it is going to be hard to fulfill it all?I'll give an example to answer your first question, but I want to hit the second aspect of what you talked about first. There is going to be a shakeout right now, and I think there is a shakeout underway. We've seen a lot of M&A [merger and acquisition] activity this year. We've seen a couple bankruptcies. We've seen a couple of people get acquired for likely very little money, and that's because the free money of the past has gone away, especially in a high capital-intensive industry with high risk. Even as we're seeing now, Viasat, one of the most established players, had their crown jewel new satellite malfunction shortly after getting into orbit. Then the company they recently acquired, a UK company, Inmarsat, one of their recently launched satellites malfunctioned in orbit. So now Viasat has got two malfunctioning satellites that they're trying to deal with. This is a really high-risk business that we're talking about, and that opens up new potential for M&A, and it also opens up new opportunities as valuations have come down where companies that might not have been either competing with each other but could see each other as compatible are now starting to join forces effectively. And other companies that had a stronger position coming into this shakeout period are starting to take advantage of that, as well as investors who are behind those companies.This first thing that you talked about, and I'll give the example, I think the data communications world is the perfect example of, is there enough money and is there enough demand to go around for everybody? When you look at just purely broadband services, which actually there's quite a bit of variety within how you provide those services, which kind of customers you target, that realm has seen no shortage of demand. Every single company you talk to, whether it's a company that provides regional-focused broadband service to enterprises in one location or another company that goes after transatlantic flights and providing in-flight Wi-Fi, every single executive I talk to across that data communications business says, “We need more satellites and orbits so that we can provide more supply because there's more demand than we can provide.”And we're talking about what's already one of the most crowded parts of the space industry, from an established perspective, with multiple players around the world providing services all over the place. The fact that all of those guys are looking at this hockey stick from a demand perspective and all the different layers that they can provide service to — whether it's households, governments, businesses, shipping companies, whatever — that's where there's a lot of excitement around, this established market is even growing at a high rate, what about all these other little nascent markets? I'm not talking space tourism. That might be a fun place to watch that people always get excited about. It’s one of the lowest revenue sources in the industry. I'm talking about the lunar infrastructure that I mentioned before. Remote sensing is one of the wildest frontiers in the last decade, and when you look at the varieties of companies that are competing and the customer capture that they're getting and the new applications that are coming out of that, it's absolutely wild. And so I think those new growing verticals are just showing that, yes, there's still demand, it's still growing.To the Moon and MarsAssuming that the US, NASA, we're going to go to the Moon, we're going to stay on the Moon, we're going to build stuff on the Moon, over the next 15 years will most of those rockets be NASA rockets taking people and stuff to the Moon, or SpaceX rockets?I don't even think it's just going to be SpaceX rockets. I think Starship definitely, if they continue to make progress… But mind you, it's been a little bit of a bumpy road in recent years. We have some reliability issues with the Raptor engines we’ve got to still work out. Albeit the first flight was called a success, I think rightfully so, but it's an incremental one and they still have a lot of steps to go. And when you go back to years past, just even flying humans on Starship, SpaceX has been very candid about saying, “Look, we want to do hundreds of these flights before we put people on this thing.” So maybe it's not Starship, at least in this decade, that's flying tons of people to the Moon. But you've got a workhorse in Falcon 9 that can deliver lunar payloads. It is going to deliver lunar payloads even in the next year.You've got a number of other rockets that are coming online to deliver services. NASA's own rocket, SLS, really isn't going to fly more than once a year at best. And that's pretty optimistic. I see that as lifting the biggest stuff that we need to try to get there, such as getting Orion and Lunar Gateway and all these other things. But really the core of it is, when we're talking about building infrastructure on the Moon in a way that you have a sustained presence, that's a group effort. This is not a single company, single agency doing that. That's something where you need the services of the likes of Firefly building their lunar lander, Astrobotic out of Pittsburgh building their lander. You need Rocket Lab to get Neutron flying. You want Relativity to have Terran R flying. You want this robust ecosystem of transportation devices sort of like we do of any other method of transportation here in the United States and globally, where it's not just one company that builds all the ships. Even in airlines, Boeing and Airbus dominate; however, they're two of a broader ecosystem of several other companies that have carved out niches for them making regional aircraft and stuff like that. And that's what's going to be needed to build that broader lunar infrastructure.I love the notion of going to Mars and colonizing Mars. What is your sense of other people in the space industry who don't work for SpaceX, what do they make of that goal that Elon Musk talks about? Do they view it as just Elon being Elon, these kind of huge aspirational goals? Or do they think this is something we can do as a space industry over the next quarter century?One of the most fascinating things, I think, is that you would get a huge variety of answers from people in the space industry on whether or not (1) they fundamentally agree with that premise that we should be doing it, what it should look like, etc., and (2) how we're going to make it happen if they're even in favor of doing so. And I think that's an amazing reflection of the different interests and the variety of folks who are in this industry, the inspiration that they take from the different missions of either their companies or agencies or projects that they're working on. I think at its core, it's something that still feels too far out to really put a pin in it because there's not a right way to do it currently and not an effective way to do it currently. And so it's something that, sort of like with the Moon and the Artemis Accords providing this new framework of cooperation and how we use resources and space, going to Mars, it's only really going to become a question of how should we be doing this once we're actually getting closer to doing it.I think a commercial company getting a lander on Mars is going to be a first start in that new era. But even that I don't see happening for another five to six years at least, and that's just maybe a small spacecraft. So that's a question I think is extremely open ended. But I do see us on this trajectory where it's not just the Moon, it's not just Mars, it's other planetary bodies, it's asteroids, it's all these other things of exploration where once we start getting into the realm — and you can look at any of the explorers of the past to kind of find your guide for how this happened, there were people who made that first foray into a new land and a new realm, and then after that we're like, “Okay, so we can do this. Cool. Now let's try to figure out what this should really look like and what establishing a settlement on another planet would really look like.”My short answer is, we're so far away from it in a realistic sense that I think what I would point people to now, with the fear of them losing interest in what space can really provide to the rest of humanity and the benefits it provides, that they should be looking at the current infrastructure that we have here on Earth and how it benefits us and makes our everyday lives better, one, and two, the real near-term possibilities of what the United States putting a presence on the Moon, China putting a presence on the Moon, India putting a presence on the Moon, what that looks like geopolitically, what that looks like from a resources standpoint, how we can compete in a way that's not leading to some sort of new conflict in space. That just seems like a place where things could escalate really quickly and poorly. As opposed to what's really happening right now is, in the next couple of years we're going to see more and more spacecraft landing on the Moon, and I think that's an exciting near-term future. What we do on Mars, what we do on asteroids, what we do elsewhere, it's going to be something down the road. This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe
undefined
Aug 16, 2023 • 37min

🚀 Faster, Please! — The Podcast #34

The podcast discusses the feasibility of top-down economic planning and the flaws of socialist planning, with insights from guest Pete Boettke. It explores the history and aspirations of techno socialism, renewed interest in rationalizing the economic system through AI, and the potential of technosocialism to improve the economic system. Lastly, the podcast touches on the dangers of concentrated power and the potential future of socialism with advancements in artificial general intelligence.
undefined
Jul 27, 2023 • 29min

🚀 Faster, Please! — The Podcast #33

Over the past 15 years, the cost to launch a rocket into orbit has declined dramatically thanks to SpaceX. Today, we're witnessing the launch of a new Space Age — one built around billionaires like Elon Musk, but also a flowering of smaller private ventures. To discuss the state of play in the emerging orbital economy, I've brought Ashlee Vance on this episode of Faster, Please! — The Podcast.Vance is the author of the new book, When the Heavens Went on Sale: The Misfits and Geniuses Racing to Put Space Within Reach. He previous wrote, Elon Musk: Tesla, SpaceX, and the Quest for a Fantastic Future in 2015.Faster, Please! is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber.In This Episode* How SpaceX launched a new Space Age (1:13)* The companies building a “computing shell” around the planet (8:37)* The proliferation of satellites (15:07)* The downsides of the emerging space economy (24:07)Below is an edited transcript of our conversationHow SpaceX launched a new Space AgeJames Pethokoukis: The book begins with a story of the first successful orbital launch of a SpaceX Falcon 1. There were three failed attempts, the whole thing is looking pretty dicey about the future of the company in this effort, and on the fourth attempt, September, 2008, they're able to get to orbit and release a payload. Before September, 2008, what does the space economy/space industry look like? Where are we starting?Ashlee Vance: The starting point: sort of sadly, it looked a lot the same for many, many decades. We had this nation-backed space program, [which was] dominant. There were just a handful of nations, really, that were the major players in all this. Some wealthy people at various stages had come along and tried to commercialize space and make their own rockets, and had varying degrees of success, but no staying power. It ended up that it always takes longer and costs more than you think. And NASA was always sitting there really as your main competitor and undermining your business. With the Falcon 1, it really was this watershed-type moment where finally somebody had succeeded. Yes, SpaceX had people from traditional aerospace, but Elon [Musk] certainly was not from the aerospace world. He had a lot of 20-somethings on his team who had never done this before. It just signaled this new era, or the possibility of a new era, because you had people just who hadn't been part of the old guard doing this thing.The goal here was to get a rocket into space and get it there way cheaper than what NASA was doing. What was the key breakthrough that allowed that decline in costs? And why didn't NASA just do this?NASA, and in particular the Department of Defense, had desired this type of thing for a long time: a low-cost rocket that could get to space quickly and often. It seems like this should be doable, but they had really struggled to make it happen. The DOD had funded various efforts. There's a couple things going on. SpaceX had this huge advantage, I think, of this clean slate to this. They came at this without the usual baggage. And in this case, the baggage means a lot of military government contractors who are pricing things quite expensively. They're doing things the way they've always done them, which means you probably don't want to see any sort of failure so you're building it in a ton of redundancy and spending all this extra money to make sure you look good when this thing goes.SpaceX comes in with this clean slate. The original pitch deck for SpaceX described it as like the Southwest for space. Cost was like at the top of [Elon Musk’s] mind and he wanted to make this cheap. They did have some breakthroughs. The physics around a rocket are the physics, and we've known this for decades. There's not much room for huge breakthroughs in engineering that nobody has thought of yet. But they did come in with this modern, Silicon Valley–style approach to software, particularly to electronics—although this kind of comes in later in SpaceX's history—where SpaceX was going to build a lot of the electronics themselves, often turning to consumer-grade electronics instead of what people call space-grade, which means it's built by a military contractor, it probably costs a thousand times what it should cost, but it's guaranteed to work in space. They had this clean slate. They did things as cheap as possible. The team was small. It wasn't this bloated contractor. That was their primary advantage at the beginning, I would argue. Over time, as they've gotten much bigger and much more money is coming in, there's a whole host of technological advantages. But on the Falcon 1, it really was that clean slate, this low-cost approach.Obviously if you're beginning your book, which is not a history of SpaceX, but you're beginning with SpaceX, then that must have marked an important inflection point where you could sort of imagine two paths. One path: the 2010s look a lot like the 2000s, which look a lot like the ‘90s. Versus this very different path.Why is SpaceX important in creating this new path, and what do things look like now?Yeah. I'm so glad you called that out and you phrased it the way you did with these two paths, because a lot of people—my editors were giving me grief for, “Why are you spending so much time talking about SpaceX in the prologue of this book that's not going to be about SpaceX?” But as you pointed out…By the way, having dealt with book editors, I can imagine that conversation quite easily.I wanted people to know how fragile this was, and where it did it come from? You mentioned it: Three of the previous rockets had failed, SpaceX was running out of money, they were running out of credibility, people had been on this island, Kwajalein, for six years, basically losing their minds. If this rocket does not go, I think we do end up in that scenario that you were just talking about, where the 2010s look pretty much like they always had. It was important to me just to give people this history, how hard this is. I see this as this inciting incident. It's funny, because you kind of go from governments and then there were like honest-to-God billionaires. When Elon started SpaceX, he was rich, but he wasn't rich like he is now. We're talking about like a hundred million dollars he put into SpaceX. So the bar had come down quite a bit. But in that moment when this rocket flies and then in the years that follow, when SpaceX really starts to hit its stride, this unlocks all of this.There was so much enthusiasm for space and young kids who wanted to get into this industry, and it had been slow and boring and the excitement had sort of come out of it. You had the generation of people who had grown up watching Apollo. Those people were getting older, and there wasn't something new to look at for a lot of people who were much younger. And here it is. Here's this company that's making commercial space real. And this guy, Elon, is quite eccentric and interesting, and some people sort of want to be like him. I write about it in the book: It was sort of like the four-minute mile to me. It's like, once somebody does it, then all of a sudden you see lots of people now are breaking the four-minute mile. This thing that seemed impossible, it turns out is possible. You have this unlocking in your head of what people can do. And so I just think across the world, it unlocked this passion, this latent engineering smarts and energy, and made this seem real. So you end up with startups all over the world chasing rockets and satellites.The companies building a “computing shell” around the planetIn the book, you write, “The future that all these space buffs have already started building is one in which many rockets blast off every day. These rockets will be carrying thousands of satellites that will be placed not all that far above our heads. The satellites will change the way communications work on Earth by, for one, making the internet an inescapable presence with all the good and bad that entails. The satellites will also watch and analyze the earth in previously unfathomable ways. The data centers that have reshaped life on our planet will be transported into orbit. We are, in effect, building a computing shell around the planet.” Other than SpaceX, who are the companies building that computer shell?The one that comes to mind is the next sort of central actor in the book, which is this company called Planet Labs, which is based in San Francisco. For people who don't know, they already surround the Earth with about 250 imaging satellites. They can take, and they do take, pictures of every spot on the Earth's landmass every day. Multiple pictures. Unlike even the world's biggest governments, China, Russia, the US, which have spice satellites obviously, but they only have a handful of spy satellites. And they tend to only look where interesting things might be happening. Planet sees everything that's happening all the time. And this is not some far-off concept. They had this full constellation up and running in 2018 and have just been adding to it ever since.At the time they launched, in low-Earth orbit there were about [2,000] satellites. And Planet had put up about 250. They were about 10 percent of all the satellites in space, just from this small private company in California that grew out of NASA Ames, the Silicon Valley center. And so they're indicative of, today, we have many, many, several companies trying to build these space internet constellations, each of which require on the order of 10,000 to 20,000 satellites. You've got more imaging satellites along the lines of Planet that do all kinds of different things. And then you got a ton of scientific satellites. The whole premise is that there are many more ideas yet to come.When you watch a spy movie, they're always talking about "retasking the satellite,” like there's only one satellite over all of Asia or something. But what we're talking about now is satellites everywhere, looking everywhere, any time you want.Yeah. That movie stuff is true. That's usually what had to happen. Just as like SpaceX brought the cost of rocket launches down and created this revolution in rocketry, I argue Planet had an attendant effect satellites. I didn't mention before: A traditional satellite is like the size of a school bus, costs $500 million to $2 billion to make. People sit there working on it for like six years. It's supposed to go into space and stay there for 20 years. You can imagine the electronics on a 20-year-old satellite that's trying to do its job…I can also imagine the tension of that launch going wrong.Like, that can't go wrong for many reasons. And once the satellite gets up in space, it also has to work, right? That's why you're spending $2 billion, because if that thing doesn't work, a lot of people are losing their jobs at a company or a military outfit is in dire straits. Planet rethought this whole thing. They're like, “Let's make them much smaller. Let's put them closer to Earth.” Almost like a disposable sort of thing. They're sending up dozens at a time. They've had rocket launches — a couple, they had bad luck at the beginning — that blew up and they lost all their satellites on those. But it wasn't a make-or-break moment for the company, because these satellites are relatively cheap: $100,000 each.They rethought the whole thing, and then they were able to surround the Earth. It basically like a line scanner, and the Earth just turns under these satellites, and it's just photographing all the time. It sounds a lot like what we were talking about before, espionage and spy stuff, and there are uses for that. Although the resolution on these, you can't see somebody's face or anything like that. You mostly look at something like the size of a car. These satellites are geared to what I call monitoring the real-time activity of humans on Earth. Where are we building stuff? Where is our oil being stored? Where is it going? How are our forests? How many trees are in the Amazon? Is somebody cutting them down? The sort of movement of economic activity and environmental activity on Earth.It reminds me of, if you're trying to determine like the GDP of a country that may not be particularly honest with its government statistics, you could either accept the statistics and try to figure it out, or you could just look at it from space. How many lights are going on? Is there more activity? And try to gauge it in a more visual way. Are there companies doing that for more private-sector reasons?This happens today. China will say, “We have this much oil in our reserves.” Well, it turns out these satellites can spot all your oil storage systems. Because of the way the oil storage systems work, where they have these floating lids that can go up and down depending on how much oil is in there, the satellites can actually measure the shadow that's being reflected on the side of this tanker. And you could calculate, people argue, very accurately how much oil is being stored. We do this with places like Saudi Arabia. China comes out with its official economic metrics, and now we have a version of the truth where people come back and say, “No, you have way more oil stored up than you've been letting on.” I think this is going to be a big deal. Not to go on a huge tangent, but China's economy appears to be slowing. I'm quite certain the government will put the best possible spin on things and how they're performing. You can look not only at oil, you can look at construction — how many buildings are going up, how many houses are going up — all kinds of economic indicators.We are now on an exponential curve, and almost all of those satellites are commercial satellites, not military or government satellites that have been added. We're going to go from 10,000, if you look at all the launch manifests for the rocket companies, we get to 100,000 in the next decade. And quite likely 200,000 the decade after that, or maybe sooner. This is a totally new era of what it looks like right above our heads.The proliferation of satellitesWhat has the growth in the number of satellites looked like in recent years? And do you have a sense of how that growth will continue over the next decade?I can do that one. Easy. From like 1960 to 2020, in low-Earth orbit, we had managed to put up about 2,500 satellites. And it was not on an exponential curve. We kind of got a whole bunch up, and then every year you would add maybe 20 to 50 depending on what was going on. It was this very slow, steady march the last few years. So that's 2020: 2,500. Already, as we're sitting here today, there's now about 10,000. So that number has almost quadrupled. It's getting close to quadrupling by the end of this year. We are now on an exponential curve, and almost all of those satellites are commercial satellites, not military or government satellites that have been added. We're going to go from 10,000, if you look at all the launch manifests for the rocket companies, we get to 100,000 in the next decade. And quite likely 200,000 the decade after that, or maybe sooner. This is a totally new era of what it looks like right above our heads.The astronomers can't be happy.No. I'm sort of baffled by some of this, because SpaceX and Starlink have been the major driver of this huge increase as they're trying to build out their space internet system. Spacex is now the world's largest satellite manufacturer by several orders of magnitude. And this was no secret. They had to apply for all these licenses to put these satellites up years in advance. There were other people trying to build a space internet. The astronomers never complained until the second SpaceX did its first launch and put the satellites up and everyone could see this kind of string of pearls flying above them as the satellites start to spread out. I was amused and sort of baffled, I guess, that they waited until this was already underway to really start kind of complaining about this. But the die is cast as far as I can tell. You could argue for the Earth-bound telescopes, this is not great. On the other hand, if rocket launches are coming way down, if we're finally putting Moore's Law in space, the opportunity to put scientific instruments above this low-Earth orbit field and do a whole bunch of interesting things increases quite dramatically. If you had to build up $300 million for a rocket launch in the past just to have a go at putting your scientific instrument up, and now you can do it for anywhere from call it like $6 million to $60 million, it's a new era where more people really should get a chance.Earlier, you talked about SpaceX as the Southwest Airlines of space. But that's really not what it is anymore. Today, it's the high-end company. And other entrepreneurs have filled that space below it. Is that right?Exactly. SpaceX built that Falcon 1, which was meant to cost just a few million dollars to launch, and then quickly abandoned it. The second it worked, it moved to the much larger Falcon 9, in part because we didn't quite yet have companies like Planet Labs. Planet Labs came around 2012, a few years after the Falcon 1 launch, and really was the first to start thinking about all sending up thousands or hundreds of satellites. And so SpaceX retired the Falcon 1, you had kind of this gap, and then all of a sudden — some of these companies are real, some of them aren't — there's about a hundred rocket startups trying to make a rocket. Even SpaceX today, the Falcon 9 runs about $60 to $70 million a launch. Now you have dozens of companies trying to do launches starting at, if you believe these numbers, like $2 million a launch. Probably like somewhere between $5 and $12 million is a realistic figure. The leader in this category is in the book, this company Rocket Lab founded by Peter Beck. And they have made a rocket called Electron, which has flown now dozens of times and is really sort of like a perfectly engineered small rocket.If we can have the internet everywhere for everybody, what does that enable? What do these satellites enable?I think starting with space internet is a good one. Even though we often feel like we're connected to the internet all the time and we have our cell phones, the truth of it is there are these huge gaps all around the planet. And it probably means more on an infrastructure sense than it does on an individual not being able to check their email for a few hours. What we are creating now is a blanket of internet that will have the Earth always connected. This part makes a lot of sense to me. It's very obvious. I just think this is the next step of our technology build out. Just like in the ‘90s, we had to put data centers and fiber everywhere to sort of get the internet going; now, you want this persistent internet that can connect people and all sorts of devices all the time. And that's what we're building in space: This internet heartbeat that's washing over. Everything you've ever heard about, like Internet of Things, sensors on container ships reporting back, or things out in the farm checking the soil moisture: None of this really has worked. And the reason why, is because we haven't had this sort of persistent internet connection. If you think about like a world full of drones and flying cars and self-driving cars — all these things that have to be talking in remote spots to have all this work. It's just this glue that needs to be there. That's like case number one that I think does check out.And then of course, you have three-and-a-half billion people that just cannot be reached by fiber optic cables today, and they're not allowed to participate in the modern economy. There’s such obvious evidence that the second high-speed internet arrives in a country, education levels go up, economic levels go up. This is just like a fairness thing in letting the whole world participate in what's going on.That's fantastic because sometimes I think people are unaware of what's going on. Maybe they're kind of aware of SpaceX, but that's pretty much it. And when they think of SpaceX, they're probably mostly thinking of, Elon Musk wants to take us to Mars. I don't think they understand very much about the satellites, unless they've heard astronomers complain about it. I don't think they understand the economic and business case and just that it's all happening.This is why everyone focuses on the Moon and Mars. And it's all cool and everything, and it is still just very far out. This is why I wrote the book. I was like, you people do not understand that we are building a legit economy right over our heads. And this thing is pretty well underway and I think it is going to change life here on Earth quite quickly.Are any of the companies that you're looking at involved with creating like new space stations? There's been a lot of talk about creating new space platforms. What they'll do up there, I'm not sure exactly. There's talk about creating different kinds of products and shooting movies and doing biotechnology research. Are any of the companies cover involved with those efforts?Yeah. In the book, I spend less time on things like space habitats and some of these other businesses. But yes, I do talk about them briefly. But more importantly, I suppose for this conversation, all this is happening. In the past, you've had the International Space Station, this multinational, huge, bureaucratic thing that actually works pretty well. But that’s who's driving it. And now we have a handful of startups making space habitats. We've got SpaceX leading the way with, I guess you could call it tourism: being able to send people to these things, private citizens. This is already happening. We've had private astronauts now going to space on SpaceX rockets. And so they'll go to those habitats. A fascinating startup called Varda launched just a couple months ago. They have put what you could argue is the first manufacturing system in space. It's making medicines. You can do things without gravity pushing on molecules in space that you can't do on Earth. They're trying to make a whole new class of pharmaceuticals and bring them back to Earth. I think that's just the earliest example. There are things like asteroid mining that I thought were total jokes and are still quite far off, but there's a startup, Astro Forge. Same thing: They set up their first test earlier this year. All this stuff is actually happening now. The business cases on these things, I think some will work and some won't, but we're going to find out.The downsides of the emerging space economyWhat's the unnerving aspect? I write about this a lot: We immediately jump to the downsides. What are the costs? So I didn't want to certainly lead with that, but are there things about this that people should be concerned about? Space junk, other things?I am optimistic on the whole. History would tell us that when humans find a new territory in which to conquer, usually mistakes are made. It doesn't always go really well. We have a reality setting up right now where you had this handful of governments moving very slowly, launching a rocket once a month. Now we're moving to like every day and thousands of satellites, and it really is a bit of ‘whoever gets their first wins’ sort of scenario. Once you start adding a race to these things, that often that doesn't go well.The thing that everybody is worried about is these satellites crashing into each other and creating a debris field in low-Earth orbit. And obviously none of these companies want that to happen. They're the ones spending hundreds of millions, billions of dollars to build these things. And we do have systems in place to track this stuff, but that becomes a nightmare. There is a scenario called the Kessler Syndrome, where one of these things breaks apart and it just starts ripping into everything else, and then low-Earth orbit becomes essentially unusable. That's not only bad for this new stuff that we're talking about, but there's things like GPS that make the modern world work that would no longer work if that happens. That's a huge issue I think we're going to have.If you think about, these were nation states that had a lot of control. The rockets are essentially ICBMs more or less. You had a select group of space-faring nations. I think that's all going to change quite soon. Whoever wants a rocket blasting off from their country can have one. Almost anywhere can afford a satellite. You're talking about like a hundred grand just to kind of get going. You're going to have nation states that no longer can really be controlled the way they were or that now have access to space. Are they going to follow all the same rules that everybody else has been following for decades? Probably not.And then I think the real wild card is Russia. This is a country whose space program was already flagging. SpaceX has eaten up a ton of their business. It's rife with corruption. The war in Ukraine has made them unusable for many, many countries as far as sending up satellites and people. And they are a wild card. Space is not just some flight of fancy for Russia. It's something that's baked deep into the national pride and is near and dear to their hearts. They have no commercial space companies, startups at all. Are they a rational actor in this new world as they see there being this dominant superpower that’s going to go away?I'm going to finish by asking you the Mars question about SpaceX: Is that going to happen? Do you think that is a serious goal for that company that you can see happening on some sort of timeline that Elon Musk has talked about?I'm pretty sure it will. I mean, for Elon, you’ve always got to take everything he says with a grain of salt on timelines and ambition and all that. He tends to set these goals. They usually don't happen anywhere close to what he said, but they usually do happen. And in this case, it's not just Elon, right? I know enough of the SpaceX top engineers. They are very convinced Starship is real, that it can get to Mars, I think for sure. You're going to see years of just sending industrial equipment and things like that to Mars long before you send a human. The human question is still…things have to get better. That's a long ride to Mars. And you better be sure you can come back if you want to. A lot of stuff has to happen between here and there. But will SpaceX start putting stuff on Mars in actually sort of the relatively near-ish future? Yes. I'm quite convinced of that. This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe
undefined
Jul 21, 2023 • 30min

🚀 Faster, Please! — The Podcast #32

On Faster, Please! — The Podcast, I've interviewed guests on exciting new technologies like artificial intelligence, fusion energy, and reusable rockets. But today's episode explores another Next Big Thing: biotechnology. To discuss recent advances in CRISPR gene editing and their applications for medicine, I'm sitting down with Kevin Davies.Kevin is executive editor of The CRISPR Journal and author of the excellent 2020 book, Editing Humanity: The CRISPR Revolution and the New Era of Genome Editing.In This Episode* CRISPR advances over the past decade (1:13)* What CRISPR therapies will come next? (8:46)* Non-medical applications of gene editing (13:11)* Bioweapons and the ethics of CRISPR (18:43)* Longevity and genetic enhancements (25:48)Faster, Please! is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber.Below is an edited transcript of our conversationCRISPR advances over the past decadeWhen people talk about AI, for instance, they might be talking about different versions or applications of AI—machine learning being one. So when we talk about CRISPR, are we just talking about one technique, the one they figured out back in 2012? Are there different ones? Are there improvements? So it's really a different technique. So how has that progressed?You're right. CRISPR has become shorthand for genome editing. But the version of CRISPR that was recognized with the Nobel Prize three years ago in 2020 to Jennifer Doudna and Emmanuelle Charpentier was for one, we can call it the traditional form of CRISPR. And if I refer to it again, I'll call it CRISPR-Cas9. Cas9 is the shorthand name for the enzyme that actually does the cutting of the DNA. But we are seeing extraordinary progress in developing new and even more precise and more nuanced forms of genome editing. They still kind of have a CRISPR backbone. They still utilize some of the same molecular components as the Nobel Prize–winning form of CRISPR. But in particular, I'm thinking of techniques called base editing and prime editing, both of which have commercial, publicly funded biotech companies pushing these technologies into the clinic. And I think over the next five to 10 years, increasingly what we refer to as “CRISPR genome editing” will be in the form of these sort of CRISPR 2.0 technologies, because they give us a much broader portfolio of DNA substitutions and changes and edits, and give the investigators and the clinicians much more precision and much more subtlety and hopefully even more safety and more guarantees of clinical efficiency.Right. That's what I was going to ask. One advantage is the precision, because you don't want to do it wrong. You don't want mutations. Do no harm first. A big advantage is maybe limiting some of the potential downsides.In the ideal gene-editing scenario, you would have a patient with, say, a genetic disease that you can pinpoint to a single letter of the genetic code. And we want to fix that. We want to zero in on that one letter—A, C, T, or G is the four-letter alphabet of DNA, as I hope most of your listeners know—and we want to revert that back to whatever most normal, healthy people have in their genetic code at that specific position. CRISPR-Cas9, which won the Nobel Prize, is not the technology to do that sort of single base edit. It can do many other things, and the success in the clinic is unquestionable already in just a few years. But base editing and, in particular, prime editing are the two furthest developed technologies that allow investigators to pinpoint exactly where in the genome we want to make the edit. And then without completely cutting or slicing the double helix of DNA, we can lay up the section of DNA that we want to replace and go in and just perform chemistry on that one specific letter of DNA. Now, this hasn't been proven in the clinic just yet. But the early signs are very, very promising that this is going to be the breakthrough genome-editing technology over the next 10 to 20 years.Is CRISPR in the wild yet, or are we still in the lab?No, we're in the clinic. We are in human patients. There are at least 200 patients who have already been in or are currently enrolled in clinical trials. And so far, the early results—there are a few caveats and exceptions—but so far the overwhelming mood of the field is one of bullish enthusiasm. I don't want to complete this interview without singling out this one particular story, which is the clinical trial that has been sponsored by CRISPR Therapeutics and Vertex Pharmaceuticals for sickle cell disease. These are primarily African-American patients in this country because the sickle cell mutation arose in Africa some 7,000 years ago.We're talking about a pretty big share of the African-American population.This is about 100,000 patients just in America, in the US alone. And it's been a neglected disease for all kinds of reasons, probably beyond the scope of our discussion. But the early results in the first few dozen patients who have been enrolled in this clinical trial called the exa-cel clinical trial, they've all been cured. Pretty much all cured, meaning no more blood transfusions, no more pain crises, no more emergency hospitalizations. It is a pretty miraculous story. This therapy is now in the hands of the FDA and is speeding towards—barring some unforeseen complication or the FDA setting the bar so high that they need the investigators to go back and do some further checks—this should be approved before the end of this year.There's a catch, though. This will be a therapy that, in principle, will become—once approved by the FDA and the EMA in Europe, of course—will become available to any sickle cell patient. The catch will, of course, be the cost or the price that the companies set, because they're going to look for a return on their investment. It's a fascinating discussion and there's no easy answer. The companies need to reward their shareholders, their investors, their employees, their staff, and of course build a war chest to invest in the next wave, the next generation of CRISPR therapies. But the result of that means that probably we're going to be looking at a price tag of, I mean, I'm seeing figures like $1.9 million per patient. So how do you balance that? Is a lifetime cure for sickle cell disease worth $2, maybe $3 million? Will this patient population be able to afford that? In many cases, the answer to that will be simply, no. Do you have to remortgage your house and go bankrupt because you had a genetic quirk at birth? I don’t know quite how we get around this.Different countries will have different answers with different health systems. Do you have a sense of what that debate is going to be like in Washington, DC?It's already happening in other contexts. Other gene therapies have been approved over the last few years, and they come with eye-watering price tags. The highest therapy price that I've seen now is $3.5 million. Yes, there are discounts and waiver programs and all this sort of stuff. But it's still a little obscene. Now, when those companies come to negotiate, say, with the UK National Health Service, they'll probably come to an agreement that is much lower, because the Brits are not going to say that they're going to be able to afford that for their significant sickle cell population.Is it your best guess that this will be a treatment the government pays for?What's interesting and what may potentially shift the calculus here is that this particular therapy is the disease affects primarily African-Americans in the United States. That may change the political calculus, and it may indeed change the corporate calculus in the boardrooms of Vertex and CRISPR Therapeutics, who may not want the backlash that they're going to get when they say, “Oh, by the way, guys, it's $2 million or you're out of luck.”There are companies that are studying using CRISPR to potentially correct the mutations that cause genetic forms of blindness, genetic forms of liver disease.What CRISPR therapies will come next?And after this CRISPR treatment for sickle cell disease is available, what therapies will come next?Probably a bunch of diseases that most people, unless they are unfortunate enough to have it in their family, won't have heard of. There are companies that are studying using CRISPR to potentially correct the mutations that cause genetic forms of blindness, genetic forms of liver disease. It turns out the liver is an organ that is very amenable to taking up medicines that we can inject in the blood. The other big clinical success story has come from another company in the Boston area called Intellia Therapeutics. Also publicly traded. They've developed CRISPR therapies that you can inject literally into the body, rather than taking cells out and doing it in the lab and then putting those cells back in, as in the case of sickle cell.I’m not sure that was actually even clear: that you can do it more than one way.Yes.And obviously it sounds like it would be better if they could just inject you.Exactly. That's why people are really excited about this, because this now opens up the doors for treating a host of diseases. And I think over the next few years we will see a growing number of diseases, and it won't just be these rare sort of genetic diseases with often unpronounceable names. It may be things like heart disease. There's another company—they're all in Boston, it seems—Verve Therapeutics, which is taking one of these more recent gene-editing technologies that we talked about a minute ago, base editing, and saying that there's a gene that they're going to target that has been clearly linked with cholesterol levels. And if we can squash production of this gene, we can tap down cholesterol levels. That will be useful, in the first instance, for patients with genetic forms of high cholesterol. Fair enough. But if it works in them, then the plan is to roll this out for potentially thousands if not millions of adults in this country who maybe don't feel that they have a clearly defined genetic form of high cholesterol, but this method may still be an alternative that they will consider versus taking Atorvastatin for the rest of your life, for example.Where are the CRISPR cancer treatments?They're also making progress, too. Those are in clinical trials. A little more complicated. Of course, cancer is a whole slew of different diseases, so it's a little hard to say, “Yeah, we're making progress here, less so there.” But I think one of the most heartwarming stories—this is an n of one, so it's an anecdotal story—but there was a teenager in the UK treated at one of the premier London medical schools who had a base editing form of CAR T therapy. A lot of people have heard of CAR T therapy for various cancers. And she is now in remission. So again, early days, but we're seeing very positive signs in these early clinical tests.It sounds like we went from a period where it was all in the lab and that we might be in a period over the next five years where it sounds like a wave of potential treatments.I think so, yeah.And for as much as we've seen articles about “The Age of AI,” it really sounds like this could be the age of biotechnology and the age of CRISPR…I think CRISPR, as with most new technologies, you get these sort of hype cycles, right? Two and a half years ago, CRISPR, all the stocks were at peak valuations. And I went on a podcast to say, why are the CRISPR stocks so high? I wasn't really sure, but I was enjoying it at the time. And then, of course, we entered the pandemic. And the biotech sector, perversely, ironically, has really been hit hard by the economy and certainly by the market valuations. So all of the CRISPR gene-editing companies—and there are probably at least eight or 10 now that are publicly traded and many more poised to join them—their valuations are a fraction of what they were a couple of years ago. But I suspect as these first FDA approvals and more scientific peer review papers, of course, but more news of the clinical success to back up and extend what has already been clearly proven as a breakthrough technology in the lab with the Nobel Prize—doesn't get much better than that, does it?—then I think we're going to start to see that biotech sector soar once again.Certainly, there are a lot of computational aspects to CRISPR in terms of designing the particular stretches of nucleic acid that you're going to use to target a specific gene. And AI can help you in that quest to make those ever more precise.Non-medical applications of gene editingThere are also non-medical applications. Can you just give me a little state of play on how that’s looking?I think one of the—when CRISPR…And agriculture.Feeding the planet, you could say.That’s certainly a big application.It’s a human health application—arguably the biggest application.I think one of the fun ones is the work of George Church at Harvard Medical School, who's been on 60 Minutes and Stephen Colbert and many other primetime shows, talking about his work using CRISPR to potentially resurrect the woolly mammoth, which sort of sounds like, “That's Jurassic Park on steroids. That's crazy.” But his view is that, no, if we had herds—if that's the technical term—of woolly mammoths—roaming Siberia and the frozen tundra, they'll keep the ground, the surface packed down and stop the gigatons of methane from leaching out into the atmosphere. We have just seen a week, I've been reading on social media, of the hottest temperatures in the world since records began. And that's nothing compared to what we're potentially going to see if all these greenhouse gases that are just under the surface in places like Siberia further leach into the atmosphere. So that's the sort of environmental cause that Church is on. I think many people think this is a rather foolish notion, but he's launched a company to get this off the ground called Colossal Biosciences, and they're raising a lot of money, it appears. I'm curious to see how it goes. I wish him well.Also, speaking of climate change, making crops more resilient to the heat. That’s another I’ve heard…One of the journals I'm involved in, called GEN Biotechnology, just published a paper in which investigators in Korea have used CRISPR to modify a particular gene in the tomato genome to make it a higher source of vitamin D. And that may not seem to be the most urgent need, but the point is, we can now engineer the DNA of all kinds of plants and crops, many of which are under threat, whether it’s from drought or other types of climate change or pests, bacteria, parasites, viruses, fungi, you name it. And in my book Editing Humanity, which came out a couple of years ago, there was a whole chapter listing a whole variety of threats to our favorite glass of orange juice in the morning. That's not going to exist. If we want that all-natural Florida orange juice, we're not going to have that option. We've either got to embrace what technology will allow us to do to make these orange crops more resistant to the existential threat that they're facing, or we're going to have to go drink something else.I started out talking about AI and machine learning. Does that play a role in CRISPR, either helping the precision of the technology or in some way refining the technology?Yeah, hopefully you'll invite me back in a year and I'll be able to give you a more concrete answer. I think the short answer is, yes. Certainly, there are a lot of computational aspects to CRISPR in terms of designing the particular stretches of nucleic acid that you're going to use to target a specific gene. And AI can help you in that quest to make those ever more precise. When you do the targeting in a CRISPR experiment, the one thing you don't want to have happen is for the little stretch of DNA that you've synthesized to go after the gene in question, you don't want that to accidentally latch onto or identify another stretch of DNA that just by statistical chance has the same stretch of 20 As, Cs, Ts, and Gs. AI can help give us more confidence that we're only honing in on the specific gene that we want to edit, and we're not potentially going to see some unforeseen, off-target editing event.Do you think when we look back at this technology in 10 years, not only will we see a wider portfolio of potential treatments, but we'll look at the actual technique and think, “Boy, back in 2012, it was a butchery compared to what we're doing; we were using meat cleavers, and now we're using lasers”?I think, yeah. That's a slightly harsh analogy. With this original form of CRISPR, published in 2012, Nobel Prize in 2020, one of the potential caveats or downsides of the technology is that it involves a complete snip of the double helix, the two strands of DNA, in order to make the edit. Base editing and prime editing don't involve that double-stranded severance. It's just a nick of one strand or the other. So it's a much more genetically friendly form of gene editing, as well as other aspects of the chemistry. We look forward to seeing how base and prime editing perform in the clinic. Maybe they'll run into some unforeseen hurdles and people will say, “You know what? There was nothing wrong with CRISPR. Let's keep using the originally developed system.” But I'm pretty bullish on what base and prime editing can do based on all of the early results have been published in the last few years on mice and monkeys. And now we're on the brink of going into the clinic.One medical scenario that they laid out would be, what if two people with a deadly recessive disease like sickle cell disease, or perhaps a form of cystic fibrosis, wanted to have a healthy biological child?Bioweapons and the ethics of CRISPRThis podcast is usually very optimistic. So we're going to leave all the negative stuff for this part of the podcast. We're going to rush through all the downsides very quickly.First question: Especially after the pandemic, a lot more conversation about bioweapons. Is this an issue that's discussed in this community, about using this technology to create a particularly lethal or virulent or targeted biological weapon?Not much. If a rogue actor or nation wanted to develop some sort of incredibly virulent bioweapon, there's a whole wealth of genetic techniques, and they could probably do it without involving CRISPR. CRISPR is, in a way, sort of the corollary of another field called synthetic biology or synthetic genomics that you may have talked about on your show. We've got now the facility, not just to edit DNA, but to synthesize custom bits of DNA with so much ease and affordability compared to five or 10 years ago. And we’ve just seen a global pandemic. When I get that question, I've had it before, I say, “Yeah, did we just not live through a global pandemic? Do we really need to be engineering organisms?” Whether you buy the lab leak hypothesis or the bioengineering hypothesis, or it was just a natural transfer from some other organism, nature can do a pretty good job of hurting human beings. I don't know that we need to really worry too much about bioweapons at this point.In 2018, there was a big controversy over a Chinese researcher who created some genome-edited babies. Yeah. Is there more to know about that story? Has that become a hotter topic of discussion as CRISPR has advanced?The Chinese scientist, He Jiankui, who performed those pretty abominable experiments was jailed for the better part of three years. He got early release in China and slowly but surely he's being rehabilitated. He's literally now moved his operation from Shenzhen to Beijing. He's got his own lab again, and he's doing genome editing experiments again. I saw again on social media recently, he's got a petition of muscular dystrophy families petitioning Jack Ma, the well-known Chinese billionaire, to fund his operation to devise a new gene editing therapy for patients with Duchenne muscular dystrophy and other forms of muscular dystrophy. I wouldn't want He Jiankui let within a thousand miles of my kids, because I just wouldn't trust him. And he's now more recently put out a manifesto stating he thinks we should start editing embryos again. So I don't know quite what is going on.It seems the Chinese threw the book at him. Three years is not a trivial prison sentence. He was fined about half a million dollars. But somebody in the government there seems to be okay with him back at the bench, back in the lab, and dabbling in CRISPR. And I don't know that he's been asked, does he have any regrets over the editing of Lulu and Nana. There was a third child born a few months later as well. All he will say is, “We moved too fast.” That is the only caveat that he has allowed himself to express publicly.We know nothing more about the children. They're close to five years old now. There's one particular gene that was being edited was pretty messed up. But we know it's not an essential gene in our bodies, because there are many people walking around who don't have a functional copy of this CCR5 receptor gene, and they're HIV resistant. That was the premise for He Jiankui’s experiment. But he has said, “No, they are off limits. The authorities are not going to reveal their identities. We are monitoring them, and we will take care of them if anything goes wrong.” But I think a lot of people in the West would really like to help, to study them, to offer any medical assistance. Obviously, we have to respect their privacy. The twin girls and the third child who was born a bit later, maybe they're being protected for their own good. How would you like it if you grew up through childhood and into your teenage years, to walk around knowing that you were this human experiment? That may be a very difficult thing to live with. So more to come on that.There’s no legitimate discussion about changing that in the West or anywhere else?Obviously, in the wake of what He Jiankui did, there were numerous blue ribbon panels, including one just organized by the National Academy of Sciences, just a stone's throw from where we're talking today. And I thought that report was very good. It did two things. This was published a couple of years ago. Two important things came out of it. One is this all-star group of geneticists and other scientists said, “We don't think that human embryo editing should be banned completely. There may be scenarios down the road where we actually would want to reserve this technology because nothing else would help bring about a particular medical outcome that we would like.” And the one medical scenario that they laid out would be, what if two people with a deadly recessive disease like sickle cell disease, or perhaps a form of cystic fibrosis, wanted to have a healthy biological child?There are clinics around the country and around the world now doing something called pre-implantation genetic diagnosis. If you have a family history of a genetic disease, you can encourage the couple to do IVF. We form an embryo or bunch of embryos in the test tube or on the Petri dish. And then we can do a little biopsy of each embryo, take a quick sneak peek at the DNA, look to see if it's got the bad gene or perhaps the healthy gene, and then sort of tag the embryos and only implant the embryos that we think are healthy. This is happening around the country as we speak for hundreds, if not thousands, of different genetic diseases. But it won't work if mom and dad have a recessive, meaning two copies of a bad gene, because there's no healthy gene that you can select in any of those embryos. It would be very rare, but in those scenarios, maybe embryo editing is a way we would want to go. But I don't see a big clamor for this right now. And the early results have been published using CRISPR on embryos in the wake of He Jiankui did have said, “It's a messy technique. It is not safe to use. We don't fully understand how DNA editing and DNA repair works in the human embryo, so we really need to do a whole lot more basic science, as we did in the original incarnation of CRISPR, before we even dare to revisit editing human embryos.” Longevity is interesting because, of course, in the last 18 months there's a company in Silicon Valley called Altos, funded by Yuri Milner, employing now two dozen of the top aging researchers who've been lured away from academia into this transnational company to find hopefully cures or insights into how to postpone aging. Longevity and genetic enhancementsAnother area is using these treatments not to fix things, but to enhance people, whether it's for intelligence or some other trait. A lot of money pouring into longevity treatments from Silicon Valley. Do we know more about the potential of CRISPR for either extending lifespans or selecting for certain desirable traits in people?This sort of scenario is never going to go away. When it comes up, if I hear someone say, “Could we use CRISPR or any gene editing technology to boost intelligence or mathematical ability or music musical ability, or anything that we might want…”Or speed in the hundred meters.“…or speed in the hundred meters, to enhance our perfect newborn?” I would say, what gene are you going to enhance? Intelligence—are you kidding me? Half of the 10,000 genes are expressed in the human brain. You want to start meddling with those? You wouldn't have a prayer of having a positive outcome. I think we can pretty much rule that out. Longevity is interesting because, of course, in the last 18 months there's a company in Silicon Valley called Altos, funded by Yuri Milner, employing now two dozen of the top aging researchers who've been lured away from academia into this transnational company to find hopefully cures or insights into how to postpone aging. That's going to be a long, multi-decade quest to go from that to potentially, “Oh, let's edit a little embryo, our newborn son or daughter so they have the gift of 120 years on this decaying, overheating planet…” Yes, there's a lot to wade through on that.And you have another book coming out. Can you give us a preview of that?I'm writing a book called Curved Air, which is about the story of sickle cell disease. It was first described in a paper from physicians in Chicago in 1910 who were studying the curious anemia of a dental student who walked into their hospital one day. That gentleman, Walter Noel, is now buried back in his homeland, the island of Grenada. But in the 1940s, it was described and characterized as the first molecular disease. We know more about sickle cell disease than almost any other genetic disease. And yet, as we touched on earlier, patients with this who have not had the wealth, the money, the influence, they've been discriminated against in many walks of life, including the medical arena.We're still seeing terribly, tragically, videos and stories and reports of sickle cell patients who are being turned away from hospital rooms, emergency rooms, because the medical establishment just looks at a person of color in absolute agony with one of these pain crises and just assumed, “Oh, they want another opioid hit. Sickle cell? What is that?” There's a lot of fascinating science. There's all this hope in the gene editing and now in the clinic. And there's all this socioeconomic and other history. So I'm going to try to weave all this together in a format that hopefully everyone will enjoy reading.Hopefully a book with a happy ending. Not every book about a disease has a wonderful…I think a positive note to end on is the first American patient treated in this CRISPR clinical trial for sickle cell disease four years ago,Victoria Gray, has become something of a poster child now. She's been featured on National Public Radio on awhole series of interviews and just took her first overseas flight earlier this year to London to speak at a CRISPR gene editing conference. She gave a lovely 15-minute personal talk, shaking with nerves, about her personal voyage, her faith in God, and what's brought her here now, pain-free, traveling the world, and got a standing ovation. You don't see many standing ovations at medical conferences or genetics conferences. And if ever anybody deserved it, somebody like Victoria Gray did. Early days, but a very positive journey that we're on. This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe
undefined
Jul 14, 2023 • 28min

🚀 Faster, Please! — The Podcast #31

"The promise of eternal life has conventionally been the dangled carrot of religion. It is now the holy grail of Silicon Valley," writes novelist Lionel Shriver in a recent National Review cover essay. In this episode of Faster, Please! — The Podcast, Lionel joins me to discuss why some tech billionaires are chasing after immortality and the serious challenges that would accompany extended human lifespans.Lionel is a columnist for Britain's Spectator magazine. Her books include We Need to Talk About Kevin and Should We Stay or Should We Go.Faster, Please! is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber.In This Episode* The promise and peril of immortality (1:11)* Storytelling and optimism (6:44)* Lifespan vs. healthspan (12:23)* Post-humanity (19:19)Below is an edited transcript of our conversationThe promise and peril of immortalityJames Pethokoukis: In the National Review essay, you make it clear you are not a medical expert, you're not a research scientist; you're a writer of fiction. Of all the things you could have written about, both as an essay and also in your book, Should We Stay or Should We Go, what originally created your interest in this topic of longevity?Lionel Shriver: I should also clarify that, for someone who's writing about life extension, I am not immortal either. So I have no qualifications for this aside from having applied myself to it imaginatively. The book you mentioned, Should We Stay or Should We Go, is a novel about a couple that has vowed to kill themselves once they both reach the age of 80 because they don't want to fall apart. They don't want to burden others with their own crumbling. It's a parallel universe book that explores any number of different futures for this couple. And one of those futures is why I suspect I was approached to write this essay for National Review, and it's one in which there's a cure for aging. Basically, my characters live forever. Everyone in the world looks 25 and they never look any older. I have addressed myself to what that future might look like and not just look like, but feel like. What would it feel like to address yourself to a future that was potentially infinite?In the novel, it starts out great. It was exhilarating to watch your spouse, rather than get older and older, get younger and younger and return to the age when you fell in love. And everyone is healthy. There are no limitations anymore. And all your choices are also potentially infinite. You can try out every profession. It's no longer a matter of, what are you going to be when you grow up? You can be whatever you want, and then you can change your mind. It'd be something else. You can move to any city. All your choices are just this kind of smorgasbord of what you might sample. And that seems fun to begin with.That sounds like a near-utopian scenario.Yeah. The trouble is that when you think about it, one of the things that gives our lives urgency is finitude, that our decisions matter because you can't undecide them. The way we choose to spend our time matters because there's a limited amount of it. There's no redo. And effectively with eternal life, there is a redo. There's infinite redo. You can just go back and do something else. You can just go in a different direction. If you marry the wrong person, you can just marry someone else and you won't have given them, say, 10 years of your precious life. I mean, yes, but there are so many years left that it doesn't matter. And the trouble is that once you remove that, then nothing seems to matter. And that is depressing. When you remove that urgency, you also potentially remove meaning. And everything becomes arbitrary.One of the things that happens to my characters is their characters start to decay. In some ways, they trade places in terms of what kind of person they are. The wife has always been the more optimistic and reflective and joyous, whereas her husband was more programmatic and more of an ideologue. And as the hundreds of years go by, he becomes much more himself reflective and philosophical and she becomes impatient and misanthropic. Because character itself becomes arbitrary. In the essay, I'm trying to look in a nonfiction sense at, what would it really be like both emotionally and practically to have a permanent human population? And that raises huge practical problems, too. Like, you don't have any children anymore. You can't.Storytelling and optimismIs it easier for you to come up with the more dystopian scenarios? Oftentimes, I'll criticize sci-fi writing, television, books as overly focused on the dystopian. It’s almost like a lack of effort. In this case, is that basically justified: that it's very hard to write a scenario where everything kind of turns out okay if people are living forever?It is hard to write. It's always hard to write positively. It's hard for me even to write characters that are purely lovable. Since I don't know any. And it's hard to write happy endings. I do write happy endings, but they're hard to get there. And I feel you have to earn them. You can't just have happily ever after and that's it. There is one chapter in Should We Stay or Should We Go which is purely positive. It’s called “Once Upon a Time in Lambeth,” which is the neighborhood in London where they live. And it's the perfect old age. It's what we would all want. They grow only more physically beautiful as they age until people are stopping on them on the street wanting to take their pictures or paint their portraits because they're so striking. They grow only more in love and they have only a better sex life. It gets more and more rich and imaginative and exciting. Young people admire them because they both started second careers and had become hugely successful. And young people flock around their dinner table and want to hear their wisdom. Meanwhile, outside in the rest of the world, the Israeli-Palestinian problem is solved at last, Africa is a thriving economic power, etc. The thing is that there's a point only a few pages into this particular chapter that you get it: This is a satire. This is the one scenario that won't happen.It’s almost so ridiculously…It's ridiculous. In fact, it's hilarious. Optimism can be funny. And in some ways, it's also an illustration of kind of a fictional problem. Because without bad things happening, there is no story. And what makes that particular chapter a story is your growing consciousness that this is not possible. That this is ridiculous. That you are being made fun of, basically, because this is what you want and, you know, give us a break. You're never going to get it. This is hilarity at your expense. I am sympathetic with your frustration with science fiction. And it's not just science fiction. Literary fiction has a lot of unhappy endings and tragedy and dysfunction in it. That's the nature of story. It's a requirement. No badness, no story. The genres vary in terms of what that scale of badness is going to be and whether or not it's eventually going to resolve into something more palatable. But fiction is by its nature about disaster.Would your critique be the same if instead of talking about living hundreds of years, our lifespan was doubled? Instead of everyone living to be at least, on average, 75, 80, 85, it was 150, 175.To a degree. Though I think that issue of urgency, of how you spend your time, once you bring it down to, for argument’s sake let's say 150 years, that's probably less of an issue. But the practical problems do become more intrusive. If we're all living to 150, then we are going to have a huge elderly population and hardly any young people. And that poses a lot of economic issues. One of the things that I posit in the essay is that living substantially longer means the end of retirement. You can't live to 150 and retire at 65. It's economically impossible. So that means working for a long time. And the irony of this whole discussion, of course, is that the real problem we are facing is people living too long. People living too long in terrible shape. That's the real economic crisis.Lifespan vs. healthspanIn that National Review essay, you write that you’re more interested in expanding the human healthspan than the human lifespan. Extending our healthy years but not necessarily delaying death seems like a very different project.Yes. And I try to make the distinction between different projects. A lot of the Silicon Valley people are looking at longevity from the perspective of, “Let's cure death. Let's basically try to live forever.” But a much more modest group of people, and more practical, are looking at not necessarily living any longer, but living well longer. And I'm very sympathetic with that project. I'm like anyone: I don't fancy falling apart, and I would rather keep my wits about me and still be able to totter out on the tennis court and then preferably drop dead on the baseline one day. And that would be that. That's a laudable goal. And if we can get closer to that, we'd save ourselves a fortune.When we talk about the Silicon Valley quest to cure death, does this really all come down to a fear of death by people who maybe don’t hold traditional religious views of the afterlife? Or do they want to live longer so they can, I don’t know, start more companies? What’s the motivation here?I drew that distinction in the essay. There are two different things that might motivate you to extend life as long as possible. And one of them is clearly fear of death. We don't know what happens. I have my suspicions — you're not there anymore. And it's possible that the actual experience of death is not that bad, although the lead-up can be pretty grim. But the other thing that might motivate you is appetite, is desire, is wanting more. And that is something I am sympathetic with. I admire people who generate enthusiasm for living, for everything that it offers, for relationships, for love, even for another good glass of red wine. That is a positive motivation for this kind of research, which is going on all over the place. There's a lot of money being thrown at it. And I admire that. I think one of the questions you have to ask yourself in this whole life extension thing is, how much appetite would I have for continuing to be here? How many years does it prospectively give me joy to get up in the morning? And what would I be looking forward to? Is there any point at which you've just had enough red wine? (A prospect I find almost unfathomable.)If we're looking at a civilization where people are living longer and it's richer, we're solving all these other problems and we're heading out to the stars, it seems to be like there would be a lot to be curious about. There would be a lot to see and do, and I'd hate to miss it. I'd hate to miss all this really great, cool stuff by only living to 90 years old.There's another chapter in which my couple, as in most of these chapters to keep the story going, do not kill themselves when they're 80 years old. They live to well beyond 100 in relatively decent shape. They're okay, but the rest of the world isn't. Basically they live to see the end of Western civilization. This takes place in Britain. Britain has become completely overwhelmed with migration from Africa and the Middle East, which by the way demographically is very likely and is already happening. Meanwhile, there's a homegrown anarchist movement, because young people see no future for themselves; the place is in a state of economic collapse. They burned down parliament and they've shredded all the pictures in the National Gallery, etc. Basically, Western civilization is over. And the question that chapter asks, as the house they live in is invaded by migrants and taken over and they're exiled to the attic and basically eating dog food, if they could roll back the clock, would they like to live to see this or not?And I think that's an interesting question, because the way you describe the future as you see it, which inspires your curiosity, is more inventions, space travel, all these wonderful, fascinating things happening. Well, you know what? More than wonderful, fascinating things happen; things fall apart. And I have great difficulty on my own behalf answering the question that chapter poses. And the couple disagree. One of them would have been happier to die earlier and not see this. And the other one is so interested in the story that they've been involved in. And of course, if you're a news reader especially, you're involved in all kinds of stories all the time. I certainly am. And one of the sacrifices of dying is not finding out how some of them end. But the other one is so interested in the story that even if the ending is dark, he's glad to see it because he wants that narrative appetite to be satisfied. To me, that's one of the biggest questions on longevity. Do you want to stick around if the world takes a serious turn south? Do you want to stick around for that?Post-humanityThe political scientist Francis Fukuyama has written about what he calls our "post-human future." If death is an important and intrinsic part of our humanity, then immortality or near immortality moves us to being something that is no longer human as we know it. And because liberal democracy is built on the idea of human equality and a connectivity among humans everywhere, through all time, he worries about life extension or other enhancements undermining that equality. Does that concern you?Well, to a tiny degree, we've already got that differentiation based on economic profile, which does partially determine your life expectancy. People in Western countries who are themselves well off are likely to live substantially longer than either people outside Western countries or people within Western countries who are poor and generally in worse health. So we are not quite the same already. We're not looking at the same lifespan. One of the other things I did address is the likelihood that should these longevity efforts be availing, the chances are extremely high that they would be expensive and therefore available to the elite and only the elite. And therefore, that kind of division that we're living with already would grow greater. And I posited that it was not impossible that the resentment on the part of the lower classes could become homicidal.I think if you're really talking about effectively evolving into a slightly different species, then you would be generating a huge amount of political tension. And also you'd create this sense — and this is the kind of thing that science fiction explores all the time — of an overclass and therefore a kind of overlord class that lives very much longer and is likely to be hoarding the wealth and living remotely from everyone else. And I think that's more likely than the elite uploads themselves to robots or a computer. When you were talking about the nature of humanity, what it's like to be a person: I find the disembodied versions of a human future unlikely. Were we ever to achieve it, that's where we would really part ways with the species as it has always been.We experience the world in bodies and therefore we have all these senses and vulnerability to physical injury and disease. We have a very complicated relationship to our bodies, which I've written about at length. It's of great interest to me. And therefore, if we were in robots that you whose injured arm, you could simply screw a new one on — much less if we were in some kind of jar, effectively, like those brains in a jar in 1950s sci-fi movies — that never seems enviable, does it? To no longer have the embodied experience. The embodied experience comes with a lot of pain, but it also comes with a lot of pleasure.Are you optimistic, meaning that you think this research is going to pay off in dramatically longer lives, whether or not it's immortal? People are taking this very seriously. Again, we have researchers who've said someone who might make it to 150 has already been born. Do you think, directionally, this is happening and we need to be talking about it seriously now and thinking about it seriously?There's never any harm in thinking about anything. And it's interesting, so yes. My main concern would be further progress in, strictly speaking, extending longevity but not making enough progress on that business about extending healthspan. And then you've just got a bigger problem on your hands. So that, great, you've got a bunch of people who are 125 and they're drooling and don't remember their own names. This is not a future that we should be looking forward to — not personally and not socially. It's that health span thing that I think that we should be focusing on. And that means concentrating especially on dementia research, continuing to improve joint replacement. (I keep waiting on replacing my own knees, which are a complete wreck, because I just want them to inject some stem cells in them and not carve them out.)We should be focusing on medical technology that will improve the experience of being older, rather than just make people technically able to get older. And I do think a certain amount of deliberateness here as to where you put your resources is merited. I wish that drug that the FDA just approved did better than delay dementia by five months, for example. That's a start, but it's kind of discouraging. It's so small. I personally am not planning on devoting the rest of my life to living as long as possible. There's a kind of circularity to that or an implicit pointlessness. I want to spend what time I've got doing something else rather than just trying to stick around a little bit longer. So while I get my exercise and I try to eat sensibly, I'm not going to be one of those people who is totally obsessed with diet and aA million dollars a year on this infusion, this transfusion…Right. Some of these people: This is what they spend all day doing. There’sone guy who gets regular transfusions from his own 17-year-old son. He obviously spends hours and hours every day at his exercise regime. He takes hundreds of supplements. (I foresee acid reflux.) I'm not going to do that. If that means that I take five years off my life expectancy and get to do something else and finally finish the last series of Succession, I'll take that. I'll take short and sweet.Faster, Please! is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber. This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe
undefined
Jun 30, 2023 • 22min

🚀 Faster, Please! — The Podcast #30

Nuclear fusion holds the potential to provide the world with cheap, clean, virtually inexhaustible energy for the future. For decades, the technology was dismissed as sci-fi fantasy. But a series of recent technological breakthroughs — including a net-energy gain ignition at Lawrence Livermore National Laboratory last December — and spate of startups have made both government and investors increasingly optimistic. To talk about the state of the fusion industry, I’ve brought on Andrew Holland, chief executive officer at the Fusion Industry Association.In This Episode* The importance of recent fusion breakthroughs (1:17)* What should policymakers be doing to promote fusion? (5:58)* Environmentalism and fusion energy (14:09)* Will fusion be the main energy source of the future? (18:57)Below is a lightly edited transcript of our conversationThe importance of recent fusion breakthroughsJames Pethokoukis: Until recently, fusion energy was a government science project that you didn’t hear much about. But now we have dozens of startups involved and frequent media coverage of big breakthroughs. What happened?Andrew Holland: It's results. Results, results, results. Science is progressing. Things have happened on both sides of the science of fusion. Plasma physics has been around for 60 years. It's really hard. It's really challenging. And they had to create a whole new area of physics, plasma physics, to be able to understand how to do fusion. They did that for 60 years, and it was continued short progress here and there, two steps forward, one step back. Until we got to the point probably about five or 10 years ago where the scientists said, “We think we know how to make this work.” But then what's happened is that startups and new thinking came in and applied all of the other technological advances that were out there—things like material science, artificial intelligence, machine learning, high-speed computing—as well as new business practices, putting those in effect onto what had been this kind of staid field of government science.Putting those two together, and that's where the real developments and changes and things are happening. In fact, there are 38 members of the Fusion Industry Association now, with a few others around the world that are stragglers. And it's been just this almost Cambrian explosion of different technologies and ways forward and paths to get there. And everybody is competing to be the one to get there first and the one to get there best. So it is an exciting time. And we're seeing the effects of all of this other technology coming into plasma physics. Things have really changed.So how significant was that breakthrough at Lawrence Livermore last year, both for the technology and also for investor and public awareness? Yeah, it is significant in the kind of public awareness and public assessment of it. I can tell you that our website had its highest day ever in December when the announcement from the NIF happened. And I can tell you just kind of anecdotally a lot of that awareness came about. But the nature, I think, of an exponential curve, a Moore's law–type thing where it doubles every year, doubles every so often—is that when it's exponential, it's going straight up, but for a long time it looks pretty flat. So a long time below the level, it's been doubling and doubling and doubling over a number of years. It just started from a very low point. Those inside the field knew that something was happening, but it never broke out. It never got into the New York Times. It never got into Twitter discussions. It was all sort of inside baseball discussions.It's been a completely new thing for the fusion community to now have a lot of interest coming into it. That said, though, the investors were a little keyed in a little bit earlier. Since the NIF announcement, we've seen some new deal flow. We've got about $6 billion invested in private fusion. Of that, most of it came in before the NIF announcement. Investors were looking at this. Investors were aware of it. We are still seeing some of the deal flow that post-NIF takes some time. There's a lot of due diligence that investors do and stuff like that, so we haven't yet seen the real explosion from NIF of investment and running. But I think we're due to pretty soon.We're seeing this as kind of a starting gun of competition around the world. What should policymakers be doing to promote fusion?What is the policymaker awareness and action on this technology?We're getting there. In March of 2022, the White House held an event calling for a “bold decadal vision on commercial fusion,” basically saying, can you get to commercial fusion in 10 years? It's an aggressive target. Our company said, yes, we can—with your help. The White House put in not an aggressive amount of budget in the scheme of billions and trillions even in the IRA and various other subsidy measures. Instead what they've started up is what's called a new milestone-based public-private partnership. The government gives pay-for-performance metrics on how to invest in fusion companies. Basically, the companies will say, “We think we can do this, this, and this.” And then the government says, “Okay, we'll pay you X amount for each of these milestones when you reach them.” Instead of the old way of doing a public-private partnership, which is you have to account for all the money you put in and we'll give you a fixed dollar amount and all this sort of stuff.This is actually the way that NASA invested in SpaceX. It's a way to promote innovation in the companies while also protecting the taxpayer, because it is still risky in a business sense to put money into fusion. It's a really innovative new model for getting there. The DOE just put out these awards a couple of weeks ago in late May. It's gone to eight companies fusion companies, all doing work here in the United States.We're seeing this as kind of a starting gun of competition around the world. The Brits have an aggressive program for a commercial fusion pilot plant. The Germans just put out a roadmap for how to get there. The Japanese have one. For a long time, the government science people have been cooperating together at ITER, which is the publicly funded science experiment in the south of France. It will get net energy when it turns on, and will be a significant experiment, but it's different than a commercial direction. And now we see all these countries and companies racing towards this. And honestly, we also see the Chinese making aggressive plans and moving forward on their own internal pathway as well. The NIF, in many ways, was kind of a starting gun for this process, and we're seeing it happen around the world.You have diversity: You have government, you have the private sector, and there's also a diversity of technological approaches as well. It’s not just one thing, right?Yes. There is a huge diversity in technological approaches. Of the 38 member companies you have of the FIA, none of them are taking the exact same technological pathway. It is, instead, a broad family tree of fusion with, at one end, laser-inertial fusion—which is like what the NIF did: taking lasers and firing them on a tiny pellet of fuel—and on the other end is magnetically confined fusion energy—which is using giant magnets to confine a plasma at extreme temperatures to get fusion out that way. And then in between, there are all sorts of other magneto-inertial types, which is a mix of one or the other. Some use electric pulses, some use giant pistons, some use plasma guns: all sorts of different ways of confining and controlling the plasma. And this is kind of what you'd expect in a new technology: We just don't quite know yet which is the one that will get there first—well, NIF got there first—but which is the one that will get there first in a commercially relevant manner. And then which one will then also show that it's the most commercially competitive as well. While you shouldn't probably expect 38 companies to all get there and all be the most successful there, there are multiple different ways forward. And they will probably all have different markets and different places that pick up each around the world. But exciting times in the technology.We have to make sure that fusion gets the same subsidies as all the other clean-energy technologies. Fusion just needs a level playing field. Whether it’s on the regulatory side or the funding side, what should government ideally be doing right now?Three key things. Number one is the regulation. Because fusion is a nuclear technology, it is going to be regulated in the United States by the NRC, the Nuclear Regulatory Commission. We've been engaged in a process—I've spent a lot of time on this—with the NRC in public that we've been contending that because fusion is so different from nuclear fission—just physically different, like you cannot have a meltdown, there is no long-lived radioactive waste, the fuel is isotopes of hydrogen or other not-dangerous fuels—so because of the physical differences, fusion should not be regulated in the same way that nuclear fission power plants are. And over a multi-year process, we convinced them. And the commission, a bipartisan group of Republicans and Democrats, five members, voted unanimously in April to regulate fusion separately from nuclear fission. It will be regulated like a medical isotope facility, an accelerator. This is a really important thing because it allows a lot more innovation. It should keep costs down. It doesn't mean there's no regulation, it just means it's regulated in the appropriate manner. That's number one.Number two is the public-private partnerships that I talked about. I think it is important that our companies have access to the public programs, have access to the national labs. The researchers have been doing this for a long time, so to be able to work with them—ideally with government dollars, the government dollars would pay at least part of it.And then number three is, we have to make sure we're not asking for special subsidies, but we have to make sure that fusion gets the same subsidies as all the other clean-energy technologies. Fusion just needs a level playing field. We think we'll compete just as well as any other technology.Is that not the case right now?It's not clear that it's the case right now. The IRA subsidies, for example, don't mention fusion. You wouldn't expect it to; this has come so quickly that it doesn't mention fusion. We think it will be designated as a clean technology. There's no reason it won't be. But Treasury has to make that designation. There's going to be a couple of early application programs for the tax credits for manufacturing stuff, and we're going to test that and we'll see if they give any of those competitive tax credits to fusion.Environmentalism and fusion energyEnvironmental groups: Are they pro-fusion? Are they against fusion? Do they view it like nuclear fission? What is the reaction of that community? Because obviously it would be very helpful if those groups were very positive about your efforts.The groups at this point, I'd say most of them, are in a wait-and-see mode. It depends whether a group is a membership organization, which has kind of a grassroots membership and they have to see where their members are, or whether it's more of a “we can think of the best way forward.” We've had good interactions so far with a number of the bipartisan environmental groups. We haven't seen yet where places like Sierra Club or NRDC will come down. We think they should be positive about it. We've made some initial outreach. Some of our companies have worked directly with their local environmental groups as they do the outreach necessary to build new experiments and programs and stuff like that. It's, at this point, still uncertain. But maybe an example from Europe to see where we are: German Greens basically shut down the nuclear fission industry in Germany. On the other hand, the government of Germany now—SPD, so a left-wing government—has announced a pretty substantial investment into nuclear fusion. There is a good evidence that environmentalists won't be against it. Now, it's still mostly to be determined, and we're setting the groundwork to educate people, make them aware that this is not something they should be afraid of. Certainly we think there's no reason for them to oppose it, but it's not my choice.It just seems like fusion has inherent benefits that will allow us to really expand faster and not have the drawbacks that fission has had. Environmentalism and fusion energyWhen people hear “nuclear,” lots of them think about radiation and meltdowns. How do you begin to educate people that fusion is different from fission and maybe shouldn’t carry that kind of baggage?It's some work. It's some work, and education in the broad general public is really challenging on any policy issue, much less complicated science. So this is not an easy thing. We have to go in with eyes wide open. We have to be clear and direct, and we can't hide from anything. It is nuclear fusion, right? It is a nuclear reaction in which there are neutrons produced, there is radiation. You don't want to stand next to an unshielded fusion power plant. That would not be good for your health. But we know how to shield it. We know how to protect it, and it will be safe when it's running. But we have to go out in there and demonstrate that. And we can't just tell people, “This will be safe.” We have to engage with them, we have to talk to them, we have to understand what their concerns are. All this sort of stuff.Because we're a new industry, we get to start from zero instead of, unfortunately our cousins in nuclear fission, they're starting from negative so they've got to build it back up. And many of our scientists are also in fission world, and our companies don't want to see them fail, certainly. But it just seems like fusion has inherent benefits that will allow us to really expand faster and not have the drawbacks that fission has had. It's all about speed. When you talk about our energy problems—climate, clean energy, energy security—it's not about building one power plant. It's about building tens, hundreds, thousands of these. And for that, you need speed. That's why we think it's really important to get the regulation right. And regulation is downstream of public perception, so you’ve got to get people to want this. If they want it and you get the regulation right, there's no reason you can't build these things as fast as you can roll them off an assembly line.Will fusion be the main energy source of the future?Should it be part of the energy mix, like solar and wind are today? Or is this the technology that will power the future like fossil fuels power the present?If we get this right, if we get the deployment right, there is no reason that this can't be the thing that powers humanity for the rest of humanity's existence. There's a saying that once you build the first fusion power plant, the only thing you can build better is a better fusion power plant. We know that the energy system is really complicated. It's really competitive. So in the early days, fusion is going to have to compete. Fusion is going to have to get down to cost. It can't have the same problems as nuclear power or even that we're starting to see in solar or wind of deployment. You've got to be able to build these and deploy these. In the long term, once you have fusion, what you have is abundant power. And ideally abundant cheap power. When you have that, you can do all sorts of other stuff like desalinate salt water and get rid of water problems. If you've got abundant energy, you can create all sorts of energy-dense liquid fuels. That means you won't need oil anymore. You can just with feedstock do that. You can do a lot of cool stuff in space. It takes you from going to Mars in a year and a half to going to Mars in a month. And that just fundamentally changes us. You can have a shuttle going back and forth between the Earth and the Moon. Fusion power means that you have all sorts of new options for this. And it takes energy from something that you pull from out of the ground or you get from weather and turns it into something that is fundamentally a manufactured good. And that's really cool and really kind of changes our security paradigms, our environmental paradigms, and just makes it a real opportunity here to develop and move forward in a new way.Micro Reads▶ Big Tech’s Battle Royale Is Coming. The Winner? You. - Joanna Stern, WSJ | ▶ After Affirmative Action, We Can Still Fix the Education Pipeline - Jonathan Chait, New York | ▶ Billionaires and Bureaucrats Mobilize China for AI Race With US - Jane Zhang, Sarah Zheng, Bloomberg | ▶ The 2023 Long-Term Budget Outlook - CBO | ▶ European companies sound alarm over draft AI law - Javier Espinioza, FT | ▶ Big Tech Has a Troubling Stranglehold on Artificial Intelligence - Parmy Olsen, Bloomberg Opinion | ▶ Welcome to the big blimp boom - Rebecca Heilweil, MIT Tech Review | ▶ Genetic marker discovered for the severity of multiple sclerosis - Grace Wade, New Scientist | ▶ Stop talking about tomorrow’s AI doomsday when AI poses risks today - Editorial, Nature | ▶ The Path to Abundant Air Travel - Gary D. Leff, Discourse | ▶ Preserving Meaning in a Technology-Driven Society - Michael Westover, Profectus | This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe
undefined
May 26, 2023 • 29min

🚀 Faster, Please! — The Podcast #29

Many countries around the world have below-replacement fertility rates. And today’s today's guest says it's happening faster than we think, with world population on track to peak around 2060. That’s decades before the well-known UN model projection. What does that mean for the American and global economies, and what can we do about it — if anything? My AEI colleague Jesús Fernández-Villaverde joins this episode of Faster, Please! — The Podcast to discuss those questions and more.Jesús is a professor of economics at the University of Pennsylvania, where he serves as director of the Penn Initiative for the Study of Markets. He’s also the John H. Makin Visiting Scholar at the American Enterprise Institute.In This Episode* The speed of demographic transition (1:19)* World population prospects (5:57)* The geopolitics of declining fertility (9:51)* Can public policy reverse demographic trends? (15:09)* Immigration and demographics (23:28)Below is an edited transcript of our conversationThe speed of demographic transitionJames Pethokoukis: A lot of our discussion is going to be based on a paper that you co-authored, “Demographic Transitions Across Time and Space.” When you talk about a demographic transition, you're talking about a shift that countries undergo as they get richer and develop, from a high-fertility/ high-mortality demographic to low-fertility and low-mortality. Is that what you mean by demographic transition?Why is that something economists study?Jesús Fernández-Villaverde: Two reasons. First, because we believe that demographics are intimately linked with economic growth. Go back to the beginning of our science: [Thomas] Robert Malthus, one of the very earliest economists, already wrote very coherently about it. And second, because it helps us to think about a long list of policy questions that depend in a crucial way on demographics. When I think about the future of Medicare, when I think about the future of Social Security, those depend crucially on demographics. Understanding demographics is key to having good economic policies.The key findings of that paper have to do with the speed and the depth of that transition? What are you saying that is different from what people previously believed about the demographic transition?You're absolutely right: It's about the speed. If you stop any economist or demographer and you ask them what is happening with fertility on the planet, they will tell you it's falling. That's well known. What we add is a twist; we say it's falling much faster than anyone had realized before. And it's falling at a speed that is going to fundamentally transform many of our societies and the planet as a whole in ways that most policymakers are not really taking into consideration. So it's the speed. It's not that it's falling; it is falling immensely fast.I look at the fertility of the planet as a whole in 2023. According to my calculations, it’s already 2.2. That means that the planet in 2023 is already below replacement rate. Which means that the world population will start falling some moment around the late 2050s to early 2060s. … What I want the listeners to understand is, for the very first time in the history of humanity — humans have been around for 200,000 years — we are below replacement rate in terms of fertility.People and policymakers may have a general knowledge, but what you're saying is that they're dramatically underestimating how fast that is happening across the world.Exactly. Let me give you a couple of numbers which personally I think are mind-blowing. Usually, we talk about the replacement rate. The replacement rate is how many children does a woman need to have on average to keep population constant in the long run? And many listeners may have heard the number 2.1. Why 2.1? Because under natural circumstances, without any type of selective abortion, there are around 105 boys born per 100 girls. And a few of the girls that are born are not going to complete their fertility age. So that's why you need a little bit more than two.In fact, 2.1 is a very good number for the United States. It’s not a good number for the planet. Why is it not a good number for the planet? Because of two reasons. Reason one: selective abortions. You go to China, you go to India — and these are huge countries, demographically speaking — there is a lot of selective abortions. In India or China, you have around 110 kids per 100 girls. Second, because in Africa, another big part of the demographic future of humanity, infant mortalities is still sufficiently high that it makes a little bit of a difference. For the planet as a whole, the replacement rate is not 2.1. It's more like 2.2, 2.25. It’s kind of hard to know the exact number.So I go to the planet and I look at the fertility of the planet as a whole in 2023. According to my calculations, it’s already 2.2. That means that the planet in 2023 — I'm not talking about the United States, I'm not talking about North America, I'm not talking about the advanced economies, I'm talking about the planet — is already below replacement rate. Which means that the world population will start falling some moment around the late 2050s to early 2060s. Of course, this depends on how people will react over the next few decades, how mortality will evolve. But what I want the listeners to understand is, for the very first time in the history of humanity — humans have been around for 200,000 years — we are below replacement rate in terms of fertility.World population prospectsThat doesn't mean the population's going down now, right? That means the population will be going down a generation from now.Yes.My argument is the United Nations is underestimating how fast fertility is falling. Instead of 2084, I'm pushing this to 2060, let's say. And instead of 9.7, I will say that we will peak around 9.2, 9.1, and then we are going to start falling.What does that mean for the long-term estimate of peak population? Usually, you hear about the UN forecast and the forecast is usually about nine or 10 billion. So are you saying we will not reach those levels?Exactly. First of all, let me tell you the United Nations’ population prospects, so everyone knows where I am. The most recent version is 2022. The United Nations forecasts that the peak of humanity will be 2084, and that it'll be around 9.7 billion. My argument is the United Nations is underestimating how fast fertility is falling. Instead of 2084, I'm pushing this to 2060, let's say. And instead of 9.7, I will say that we will peak around 9.2, 9.1, and then we are going to start falling.And we’ll start declining faster than what the UN thinks?Yes. Definitely faster. Let me give you a very simple example. The number of births that actually did happen in China in 2022 is what the United Nations forecasted to happen around 2040. So China is running 18 years ahead of the United Nations forecast. And China is a big chunk of humanity. For India, they are also five or six years ahead of the forecast. And if you go country by country, you realize that the United Nations is always behind. If you want, I can tell you why the United Nations is doing this. Basically, their model is running hot. It's forecasting way too many births for what we are actually seeing. And that's why I'm pushing the United Nations [from] 2084 to 2060.It's a big difference. You're talking about a difference of at least half a billion people, right?Yes.That’s a lot. Tell me about the “Rule of 85,” because that's very fascinating. It's kind of a back-of-the-envelope way of looking at how to figure out some of these numbers.This is something I came up with when I was trying to explain this to undergrads, and I figured out that it’s very easy to remember. Take the United States, take Canada, take Japan: the richest, most advanced economies, so the life expectancy is around 85 years. Imagine that you have a society where you have 1000 people being born every year. Since they are going to be living on average 85 years, in the long run, that's a society that is going to have 85,000 people. If you want to forecast what the level of population of a society will be, just look at the number of births that you have in any given year, multiply by 85, and that will give you kind of a middle-run assessment. It's such a simple rule of thumb. If you want to forecast China: China is slightly below 10 million births; 10 million times 85 — most of us can that in our head — it's 850 million. Well, their population now is 1.4 billion. So there you have a 60 percent reduction. South Korea, they had 240,000 births — I'm quoting from memory, a few thousand up or down — multiply by 85, you have slightly over 20 million. Current population of South Korea: 51 million.And that’s 20 million when?It will be 20 million in 85 more years. But in some sense, this is a very optimistic scenario because it's assuming that births are not going to continue falling down, which are probably going to continue falling down because the new cohorts will be smaller. There will be less women having fewer children. In that sense, the Rule of 85, when fertility is going down, kind of gives you an upper bound.China is looking at a demographic abyss, and unless the Communist Party is able to change that, China is going to be a way less important economy in the middle run. The geopolitics of declining fertilityIt helps to have a lot of people in your country from a geopolitical standpoint. So you're talking about a different world of probably a much smaller China than people are expecting. Maybe relatively, then, a bigger India. And also what does, then, the United States look like? I do realize you don't have all these numbers in front of you either.I remember many of them. China is looking at a demographic abyss, and unless the Communist Party is able to change that, China is going to be a way less important economy in the middle run. In fact, I'm just finishing a paper with a couple of co-authors where we forecast the economic growth of China. And our main statement using demographics is that the US will grow more than China by the year 2034, because China is going to have such a big falling population. In comparison with India, India has now around 24 million births a year. I told you China is below 10, India is 25 million. So it's 2.5x as many kids per year as China. So in 50 years, the geopolitics of Asia are going to look totally different from what they are now. A lot of people in Washington are very worried about China. I think that they are right to be worried about China until the year 2030, 2035. After 2035, the future doesn't look very bright for China.Putting aside things that can change, like immigration, what would be your US population forecast?As you say, the absolute key is immigration. But let's suppose that we go — and it's not that I'm advocating that policy, but as a mental experiment, a thought experiment — let's suppose that we have perfectly closed immigration, zero immigration from now on. The US right now is 335 million, so we will probably peak at 340 million and then start falling. In fact, the US population that has both parents born in the US is already falling.What might change this forecast, either up or down? One thing you mentioned in another piece that you wrote is people's religious affiliation. Whether they become more religious, less religious, that seems to have an impact on their fertility rate and birth rates.Yes, exactly.And that can change.That can change. For instance, let me give you a very simple example that a lot of people may relate to. When Ireland was partitioned and the 26 counties in the south of Ireland became the free state of Ireland, and the six counties in the north stayed as Ulster or Northern Ireland, Protestants were around 65 percent of the population and Catholics were around 35 percent. That's why they didn't want to join the free state of Ireland. In Northern Ireland, probably Catholics are going to become a majority. Why? Because Catholics in Ireland for the last 80 years have had a little bit higher fertility.Why is this going to become so much more important? Let me give you a very simple example. Let's go back to 1950 and let me, in a very crude way, separate families between secular and religious. A secular family, let's say, has 2.5 kids. And a religious family, on average, has three kids. The difference is 0.5, but the base, 2.5, is sufficiently high that it doesn't make much of a difference. Now fast forward to 2023. The secular family is having one kid; the religious family is having two. First of all, the religious families have also reduced their size, but they have reduced their fertility less than seculars. And because the secular base now is so small, now we are talking about huge differences.The question, of course, over time is going to be, how much of this religiosity will be transmitted intergenerationally? It's the case that the sons and the daughters of religious families are also going to be religious or not. But let's assume there is some persistence. That basically will tell you that in 200 years, the composition of the US population will be extremely different. And in fact, this is not a crazy point. Most historians of what is known as late antiquity — late antiquity goes from around 300 in the current era to around 700 in the current era — argue that conversions to Christianity stop around the year 370, 380. I'm talking about Western Europe. Basically what happens over the next 300 years is that Christians have a higher fertility than non-Christians. And by the early 700s, there are just not that many non-Christians left in Europe, and Europe has become a totally Christian continent. So these things happen. Small differences in fertility, you run them for 200 years and it has a huge difference. And again, going back to my point, Northern Ireland is a very different place today than 100 years ago just because Catholics have a little bit more kids than Protestants.Aggressive policies like child subsidies, making it easier to reconcile family and work, maternity leaves, etc. can push you back to 1.7, 1.8. You are never coming back to three. You are never coming back to four. Can public policy reverse demographic trends?Something else that could change is public policy. In countries which are already experiencing these drops, they’re giving bonuses to get people to have more kids. And there's a variety of sort of subsidies to encourage… Do those policies work? My baseline is that they probably really don't work. Maybe people have kids sooner than they would otherwise. Do we know of policies that actually have any kind of significant change on the number of kids people have at least in the rich countries?First of all, let me be absolutely open that the jury is still a little bit out because, as you say, maybe what is happening is that people are just changing the moment where the kids are born. My reading of the evidence is that you make a little bit of an impact. Right now, think about countries like Spain or Italy where fertility rates are around 1.2, which is absolutely horrible. It's like a reduction of half of the size of the population in each generation. Aggressive policies like child subsidies, making it easier to reconcile family and work, maternity leaves, etc. can push you back to 1.7, 1.8. You are never coming back to three. You are never coming back to four. The point I have argued to policymakers is if you are in a society where the fertility rate is 1.8, you can handle a gently decreasing population. What you don't want to be is in front of a demographic abyss. So policies, in my reading of the evidence, help you to go from disaster into gentle decline. And I think the evidence supports that that can be achieved.What do we know about societies that undergo a demographic decline? I imagine the past when that's happened, it's been because of war and disease, not because of choices people make voluntarily. There's been some sort of shock. Do we really have a good feel for what that looks like, when a country undergoes demographic decline, not because of disaster but because of just the choices people make, whether because of religious reasons or the cost of childcare or whatever?We don't. We have never been there. I have written a piece with what I think are educated conjectures. What type of educated conjectures [do] I have? First of all, it's going to be a society that is way less dynamic. I'm a little bit older than I used to be, and I already realize that for me to adopt new technologies now is much harder than when I was 10 years younger. As the average person in society becomes older and older, you are just going to have societies that adopt fewer new technologies, you have fewer new entrepreneurs, etc.For instance, there has been a lot of discussion that in the US there are now way less new businesses than 10, 15, 20 years ago. And there is a great economist at the University of California at LA, Hugo Hopenhayn, who has I think very convincingly demonstrated that this is completely driven by the fact that we have less 25-year-olds. Most new firms are created by people in their 20s, late 20s. We have now fewer people in their late 20s. And what he actually shows is that the percentage of people in their late 20s that create firms is the same as before. But there are less of them, so you are going to have fewer new firms.We are going to be also societies that somehow lose a little bit of the sense of the future, because everyone tends to be very old. And then the third point that I conjecture — and this is something that we really, really want to keep in mind — is that drops in population are not going to be uniform across space. What I mean by that is, let's suppose that as I was mentioning before, things continue in the way they continue now in South Korea for another 50 years. So South Korea is going to lose 30 million people. Those people are not going to disappear from Seoul, from the capital; they're going to disappear from rural areas. And then what do we do with those rural areas? There is going to be a moment, and you already see that even in the US, but in a lot of places in Western Europe, population in a county starts to fall down, fall down, fall down.And you know what the real problem is? One day they close the supermarket. And it's not because supermarket owner is evil. It's just because to run a supermarket, you need enough people. And suddenly there is not enough people in the county to have a large supermarket. And once you don't have a large supermarket in the county, life becomes very hard, because the only thing you have is a convenience store. So people move out. Even people who want to live in the small rural counties move out of the rural county because there are no services in the rural county anymore. I think about, who is going to keep the universities in a small rural areas open? There is just not going to be enough people to go to these colleges. And how do you go to your community and tell them that you are closing the local campus of your biggest state university just because there are not enough kids?At least a few of the listeners are already thinking of the film Children of Men. Are you familiar with it?I actually am not.The premise is that for some reason 18 years ago, 18 years previous, women over the course of like a year just stopped having kids. And the movie begins where the youngest person alive ends up being murdered. He's an 18-year-old. It's a world where nobody's having kids and society's beginning to fall apart. It's like people have nothing to live for. They're already trying to gather up great works of art and preserve them. They don't know for who. It just seems like a society that's winding down.Let's get back. Mortality could change, of course.Yes.CRISPR, all kinds of genetic editing — you can't really predict where technology will go, but that is something that could potentially change. Or even artificial wombs, maybe that will change people's choices as well.Fair enough. Let me just tackle the issue of mortality. Remember the Rule of 85? You can change it to 90, to 95, 100. You know, 100 will be very easy because you just put two zeros. Let me go back to China. I told you 10 million births a year; now apply a rule of 100, that will be 1 billion. They are still losing 400 million. And do we really think that increases in medical technology can push mortality much later than 100? I'm not an expert, but from when I talk with people who are a little bit more knowledgeable that I am, they tend to be skeptical. In fact, I have been talking with economists who have been looking at mortality and the changes in mortality in the US and other advanced economies. Most of what modern medicine does for you is increasing the quality of life over the last years. It used to be the case that you would see someone in his 70s and he will be old and in very bad shape. Now, you're in pretty good shape until three days before you die. So I think that a lot of what medicine is going to do is not increase our life expectancy that much; it’s just about making our quality of life better. As a piece of a personal anecdote, if I may, both my wife and I are economists, which means that we have long sessions at home discussing investment portfolios and retirement accounts. And we include equations — I know that most of you probably don't have discussions with whiteboards at home and covariances of investment — but the age that I use for my own forecast of my own life is 90. I don't use more than 90, so at a personal level, I don't forecast myself living on expectation over 90 years old.Immigration and demographicsOne solution that's not a technological solution is immigration. But I would think there is a limit — even for the most pro-immigration country — to how many immigrants. It seems like it's not really a plausible policy for most countries, maybe for the United States more than others, but even here there's limits.Yes, of course. First of all, every time I talk about immigration, I remind people I'm an immigrant myself, as you can probably tell from my funny accent. So it's not that I'm against immigrants. What I tried to point out in something that I wrote is, look, I was mentioning that South Korea is about to lose 60 percent of their population. That will mean that if you want to keep population constant, you will need that 60 percent of people living in South Korea who are not of Korean heritage. Have we ever seen societies that undertake such a deep demographic change in a couple of generations? Can a political system digest that change? I'm quite skeptical. One thing is to bring 10 percent of your population, 20 percent of immigrants. A very different thing is to have 60 percent.Second point: I mentioned before that the planet as a whole is going to start losing people. And as far as we know, the net immigration to the planet is still zero. Maybe like in Men in Black there are some people coming from outside. But let's say the US in 2040 is still bringing immigrants from some developing economies, it means that demographic problem of these developing economies is going to become even more serious.So let me give you a concrete example. If I were the minister of finance of Brazil, I would not be able to sleep at night. Brazil will probably start losing population around 2030, 2032, if not earlier. Who's going to migrate to Brazil? Brazil is still losing population. The best and the brightest of Brazilians move to the US or to Europe. You go to any good US university, and there's a lot of top Brazilian students and researchers. Brazil starts losing population, which immigrants do you bring? Who's going to move to Brazil?Another country that, believe it or not, will probably start losing population maybe in another 20, 25 years are all Central American republics. Who's going to migrate to Guatemala? So what do you do then?More likely that even more so people who have possibilities, who could get a job in an advanced economy, they will leave.Exactly. So you're going to really, really be in a very tight spot. The immigration to me sounds really like I'm a US person, or I'm a German person, I'm thinking about this from a European or a North American perspective. I want the listeners to understand this is for the planet as a whole. And by the year 2055, every immigrant I'm gaining is someone else that is losing an immigrant.But let's suppose that immigration stays at a historical level, a historical average. The US is not going to be in a very tight spot, demographically speaking, in 2040. China is going to be on a very tight spot, and that's going to really be a game changer. Which goes back to my point before about why I'm not worried about China taking over the world in the year 2050.If you are a country who is able and has a history of accepting immigrants, it sounds like on a comparative level, that is really to your advantage. And if you think not only the size of your country, but the quality of your workforce is important, to me, you're making a case that this would be a big plus for the United States overall from a geopolitical, geo-economic position — relatively.Sure. Coming back to our discussion about China versus the US, I think the US is still going to attract immigrants. How many immigrants we want to attract — and I say “we” now because I'm naturalized, so I can say we — how many immigrants we want to attract is a discussion we can have. But let's suppose that immigration stays at a historical level, a historical average. The US is not going to be in a very tight spot, demographically speaking, in 2040. China is going to be on a very tight spot, and that's going to really be a game changer. Which goes back to my point before about why I'm not worried about China taking over the world in the year 2050.As I was mentioning in a previous answer, if somehow we avoid a conflict with China by the year 2030, in some sense, the war is won. It’s just an issue of waiting 10 years, handling this situation. Because China will really, really need to do something serious with their economy and their political system. Now, something that can happen is that China, you know, starts forcing people to have a lot of kids. What I will [remind] listeners is some very basic facts of nature: Even if the Chinese government starts forcing everyone to have kids, it will take nine months — and one night, I guess — and then once the kid is born, it takes, what, 22 or 23 years before this person completes college. And if we want these people to be top researchers, etc., they need to go to graduate school. It’s 20 years. Think about it in this way: If we are thinking about the top researchers among the cohort that is being born today in 2023, these people are not going to be researchers until 2051. Demographics has this enormous momentum; things that we decide today do not really show up until 30 years later. And by the way, that's one of the reasons I think that a lot of the demographic policies and a lot of economists are not very good, because most politicians do not think 30 years ahead. This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe
undefined
May 19, 2023 • 27min

🚀 Faster, Please! — The Podcast #28

Does technological progress automatically translate into higher wages, better standards of living, and widely shared prosperity? Or is it necessary to steer the development of technological improvement to ensure the benefits don't accrue only to the few? In a new book, two well-known economists argue the latter. I'm joined in this episode by one of the authors, Simon Johnson.Simon is the Kurtz Professor of Entrepreneurship at MIT. He and Daron Acemoglu are authors of the new book Power and Progress: Our Thousand-Year Struggle Over Technology and Prosperity. Simon is also co-author with Jonathan Gruber of 2019's Jump-Starting America, now out in a new paperback.In This Episode* Is America too optimistic about technology? (1:24)* Ensuring progress is widely shared (11:10)* What about Big Tech? (15:22)* Can we really nudge transformational technology? (19:54)* Evaluating the Biden administration’s science policy (24:14)Below is an edited transcript of our conversationIs America too optimistic about technology? James Pethokoukis: Let me start with a sentence or two from the prologue: “People understand that not everything promised by Bill Gates, Elon Musk, or even Steve Jobs will likely come to pass. But, as a world, we have become infused by their techno-optimism. Everyone everywhere should innovate as much as they can, figure out what works, and iron out the rough edges later.” Later, you write that that we are living in a “blindly optimistic” age.But rather, I see a lot of pessimism about AI. A very high percentage of people want an AI pause. People are very down on the concept of autonomous driving. They're very worried that these new technologies will only make climate change worse. We don't seem techno-optimistic to me. we certainly don't see it in our media. First of all, let me start out with, why do you think we're techno-optimistic right now, outside of Silicon Valley?Simon Johnson: Well, Silicon Valley is a very influential culture, as you know, nationally and internationally. So I think there's a deep-running techno-optimistic trend, Jim. But I also think you put your finger on something very important, which is since we finished the book and turned in the final version in November, I think the advance of ChatGPT and some of our increased awareness that this is not science fiction — this is actual, this is real, and the people who are developing this stuff have no idea how it works, for example—I wouldn't call it pessimism, but I think there's a moment of hesitation and concern. So good, let's have the discussion now about what we're inventing, and why, and could we put it on a better path?When I think about the past periods where it seemed like there was a lot of tech progress that was reflected in our economic statistics, whether it's productivity growth or economic growth more broadly, those were also periods where we saw very rapid wage growth people think very fondly about. I would love to have a repeat of 1995-2000. If we had technologies that could manage that kind of impact on the economy, what would be the downside? It seems like that would be great.I would love a repeat of the Henry Ford experience, actually, Jim. Henry Ford, as you know, automated the manufacturing of cars. We went from producing tens of thousands of cars in the US to, 30 years later, producing millions of cars because of Ford's automation. But at the same time Ford and all the people around him — a lot of entrepreneurs, of course, working with Ford and rivals to Ford — they created a lot of new jobs, new tasks. And that's the key balance. When you automate, when you have a big phase of automation, and we did have another one during World War II and after World War II. We also created a lot of new tasks, new jobs. Demand for labor was very strong. And I think that it's that balance we need. A lot of the concerns, the justified concerns about AI you were mentioning a moment ago, are about losing jobs very quickly and faster than we can create other tasks, jobs, demand for labor in other, non-automating parts of the economy.Your book is a book of deep economic history. It's the kind of book I absolutely love. I wonder if you could just give us a bit of a flavor of the history of what's interesting in this book about those two subjects and how they interact.We tried to go back as far as possible in economic and human history, recorded history, to understand technological transformations. Big ones. And it turns out you can go back about 1000 years with quite reliable information. There are some things you can say about earlier periods, a little bit more speculative to be honest. But 1000 years is a very interesting time period, Jim, because as you know, that's pretty much the rise of Europe timeframe. A thousand years ago, Europe was a nothing place on the edge of a not very important part of one continent. And through a series of technological transformations, which took a long time to get going — and that's part of the medieval story that we explore — [there was] a huge amount of innovativeness in those societies. But it did not translate into shared prosperity, and it was a very stop-start. I'm talking about over the period of centuries.Then, eventually, we get this Industrial Revolution, which is initially in Britain, in England, but it's also shared fairly quickly around northwest Europe: individual entrepreneurship, private capital, private ownership, markets as a dominating part of how you organize that economy. And eventually, not immediately, but eventually that becomes the basis for shared prosperity. And of course, that becomes the basis for American society. And the Americans by the 1850s to 1880s, depending how you want to cut it, have actually figured out industrial technology and boosted the demand for labor more than the Europeans ever imagined. Then the Americans are in the lead, and we had a very good 20th century combining private capital, private innovation with some (I would say) selective public interventions where a private initiative didn't work. And this actually carried a lot of countries, including countries in that European tradition, through to around 1980. Since 1980, it's become much more bumpy. We've had a widening of income inequality and much more questioning of the economic and political model.Going back into the history: Oftentimes people treat the period before the steam engine and the loom as periods of no innovation. But there was. It just didn't have the impact, and it wasn't sustained. But we were doing things as a society before the Industrial Revolution. There was progress.There was technological progress, technological change. Absolutely.The compass, the printing press, gunpowder — these are advances.Right. The Europeans, of course, were sort of the magpies of the world at that point. A lot of those innovations began in China. Some of them began in the Arab world. But the Europeans got their hands on them and used them, sometimes for military purposes. They figured out civilian uses as well. But they were very innovative. Some people got rich in those societies, but only a very few people, mostly the kings and their hangers-on and the church. Broad-shared prosperity did not come through because it was mostly forced labor. People did not own their labor. There was some private property, but there wasn't individual rights of the kind that we regard as absolutely central to prosperity in the United States, because they are central to prosperity and because they're in the Constitution for a reason, because it was coming out of feudalism and the remains of that feudal system that our ancestors in the United States were escaping from. So they said, “Let's enumerate those rights and make sure we don't lose them.” That's coming out of 800 years of hard-learned history, I would say, at that point. And that's one reason why, not at the moment of independence but within 50 to 70 years, the American economy was really clicking and innovating and breaking through on multiple technologies and sharing prosperity in a way that nobody had ever seen before in the world.Before that period in the 1800s, the problem was not the occasional good idea that changed something or made somebody rich; it was having sustained progress, sustained prosperity that eventually spread out wide among the people.Absolutely. And I think it was a question of who benefited and who was empowered and who could go on and invent the next things. Joel Mokyr, who's an economic historian at Northwestern, one of our favorite authors, has written about the sort of revolution of tinkerers. And that's actually my family history. My family, as far back as we can go, was carpenters out of Chesterfield in the north of England. They made screws for a hundred years starting in the mid-19th century in Sheffield. They would employ a couple of people at any one time. Maybe no more than eight, maybe as few as two. They probably initially polished blades of knives and eventually ended up making specialized screws. But very, very small scale. There was not a lot of formal education in the family or among the workforce, but it was all kind of relationships with other manufacturers. It was being plugged into that community. Alfred Marshall talked about these clusters and cities of regional entrepreneurship. That's exactly where I'm from. So, yes, I think that was a really key breakthrough: having the institutions, the politics, and the social pressure that could sustain that kind of economic initiative.In the middle of the Industrial Revolution, late 1800s, what were the changes that we saw that made sure the gains from this economic progress were widely shared?If we're talking about the United States, of course, the key moment is the mechanization of agriculture, particularly across the West. So people left their farms in Nebraska or somewhere and moved to Chicago to work for McCormick, making the reapers that allowed more people to leave their farms. So you needed a couple of things in that. One was, of course, better sanitation and basic infrastructure in the big cities. Chicago grew from nothing to be one of the largest cities in the world in period of about a decade and a half. That requires infrastructure that comes from local government. And then there's the key piece, Jim, which is education. There was what's known as a “high school movement.” Again, very local. I don't think the national government knew much about it until it was upon them. [It was] pushing to educate more people in basic literacy and numeracy and to be better workers. At the same time, we did have from the national government, of course particularly in the context of the Civil War, the land grant universities, of which MIT is very proudly one of by the way — one of the only two that became private for various reasons. But we were initially founded to support the manufacturing arts in Massachusetts. That was a state initiative, but it was made possible by a funding arrangement, a land swap, actually, with the federal government.Ensuring progress is widely sharedThe kind of interventions which you've already mentioned — education and infrastructure — these seem like very non-controversial, public-good kinds of things. How do those kinds of interventions translate into the 2020s and 2030s in advanced countries, including the United States? Do we have need to do something different than those?Well, I think we should do those, particularly education, better and more and update it really quickly. I think people are going to agree on that in principle; there may be argument about how exactly you do that. I do think there are three things that should be on the table for potential serious discussion and even potential bipartisan agreement. The first is what Jaron Lanier calls “data dignity,” which is basically [that] you and I should own the data that we produce. This is an extension of private property rights from the right of the political spectrum. The left would probably have other terminology for it. But what's basically happening, and the value that's being created in these large language models, is those models are taking data that they find for free — actually, it's not really free, but it's not well protected on the internet, digital data — and they're using that to train these very large models. And it's that training process that's generating, already and will train even more, huge value and potential monopoly power for incumbents there. So Jaron’s point is, that's not right. Let's have a proper organization and recognition of proper rights, and you can pay for it. And then it also gives consumers the ability to bargain potentially with these large monopolies to get developers some technologies rather than other technologies.The second thing is surveillance. I think everyone on the right and the left should be very uncomfortable with where we are on surveillance, Jim, where we've slipped into already on surveillance, and also where AI is going to take us. Shoshana Zuboff has a great book, The Age of Surveillance Capitalism on exactly this, going through where we are in the workplace and where we are in in our society. And then of course there's China and what they're doing in terms of surveillance, which I'm sure we're not going to do. In fact, I think the next division of the world may be between the low-surveillance or safeguarded-surveillance places, which I hope will include the US, and the high-surveillance places, which will be pretty much authoritarian places, I would suggest. That's a really different approach to the technology of how you interact with workers, citizens, everybody in all their various roles in life.The third one we're probably not going to agree on right away, but I do want us to have some serious discussion about it, is corporate taxation. Kim Clausing from UCLA, a former senior Treasury person, points out that we do have a graduated corporate tax system in the US but bigger companies pay less. Smaller companies’ effective tax rate is higher than bigger companies because they move their profits around the globe. That's not fair and that's not right. And she proposes that we tax mega profits above $10 billion, for example, at a higher rate than we tax smaller profits to give the big companies that are very successful, very profitable an incentive to make themselves smaller. The reason I like Kim's proposal is I want competition, not just between companies directly in terms of what they're offering, but also between business models and mental models. And I think what we're getting too much from Microsoft and Google and the others who are likely to become the big players is machine intelligence, as they call it, which basically means replacing people as much as possible. We argue for machine usefulness, which is also, by the way, a strong tradition in computer science — it's not the ascendant tradition or ascendant idea right now — that is, focusing technology on making humans more effective. Like this Zoom call is making us more effective. We didn't have to get ourselves in the same room. We are able to leverage our time. We're able to organize our lives differently.Find those kinds of opportunities, particularly for lower-income workers. We are not getting that right now because we lack competition, I think, in the development of these models. Jim, too much. You joked at the beginning that the Silicon Valley is the only optimist. Maybe that's true, but they're the optimists that matter because they're the ones who control the development of the technology. Almost all those strings are in their hands right now, and you need to give them an incentive to give up some of that. I'm sure we can agree on the fact that having the government break things up, or the courts, is going to be a big mess and not where we want to go.What about Big Tech?Does it suggest caution, as far as worrying about corporate size or breaking up these companies, that these big advances, which could revolutionize the economy, are coming from the very companies you're worried about and are interested in breaking up? Doesn't it argue that they're kind of doing something right, if that's the source of this great innovation, which may be one of the biggest innovations of our life?Yes, potentially. We're trying to be modest and we're trying to be careful here, Jim. We're saying if you make these really big profits, you pay the higher tax rate. And then you have a conversation with your shareholders about, do we really need to be so big? When Standard Oil was broken up before World War I, it was broken into 25 or 26 pieces, Rockefeller became richer. That created value for shareholders. More competition was also good, I think we can say safely at this distance, it was good for consumers. Competition for consumers is something I think we should always attempt to pursue, but competition in mental models, competition for ideas, getting more plurality of ideas out there in the tech sphere. I think that's really important, Jim. While I believe this can be — and we wrote the book in part because we believe it is — a very big moment in sort of technological choices that we humans have made and will continue to make. This is a big one. But if it's all in the hands of a few people, we're less likely to get better outcomes than if it's in the hands of hundreds of people or thousands of people. More competition for ideas, more competition to develop ways to make machines and algorithms useful to people. That's our focus.You have OpenAI, a company which was invested in by Microsoft, and Google/Alphabet is working on their version. And I think now you have Facebook and Amazon devoting more resources. Elon Musk is talking about creating his own version. Plus you have a lot of companies taking those models and doing things with them. It seems like there's a lot of things going on a lot of ferment. It doesn't to me seem like this kind of staid business environment where you have one or two companies doing something. It seems like a fairly vibrant innovation ecology right now.Of course, if you're right, Jim, then nobody is going to make mega excess profits, and then we don't have to worry about the tax rate proposal that I made. My proposal, or Kim's proposal, would have bite only if there are a couple of very big winners that make hundreds of billions of dollars. I'm not a computer scientist, I’m an economist, but it seems…Right, but it seems like those mega profits might be competed away, so I'd be careful about right now breaking up Google into eight Googlettes.Fine. I'm not trying to break them up. I'm saying give them a tax system so they confront that incentive and they can discuss it with their shareholders. The people who follow this closely, my computer science colleagues at MIT, for example, feel that Microsoft and OpenAI are in the lead by some distance. Google, which is working very closely with Anthropic, which broke away from OpenAI, is probably a either a close second or a slightly distant second. It's sort of like Manchester City versus the rest of the Premier League right now. But the others you mentioned, Facebook, Amazon, are some years behind. And years are a big deal here. Elon Musk, of course, proposed a pause in AI development and then suggested he get to launch his own AI business — I suppose to take advantage of the pause.That’s a little suspicious.There's not going to be a pause. And there's not going to be a pause in part because we know that China is developing AI capabilities. While I am not arguing for confrontation with China over this or other things necessarily, we do have to be cognizant that there's a major national security dimension to this technology. And it is not in the interest of the United States to fall behind anyone. And I'm sure the Chinese are having the same discussion. That's going to keep us going pretty much full speed. And I think is also the case that many corporate executives can see this is a potential winner-take-all. And on the applications, the thinking there is that we're going to be talking very soon about a sort of supply chain where you have these fundamental large language model, the [General-Purpose Technology] type at the bottom, and then people can build applications on top of them. Which would make a lot of sense, right? You can focus on healthcare, you can focus on finance, but you'll be choosing between, right now it looks like, one or two of the large language models. Which does suggest really big upstream profits for those fundamental suppliers, just like how Microsoft has been making money since the mid-1980s, really.Can we really nudge transformational technology?With an important technology which will evolve in directions we can't predict, can we really nudge it with a little bit of tax policy, equalizing capital labor rates? Can we really nudge it in the kind of direction that we might want? If generative AI or machine learning more broadly is as significant as some people say, including folks at MIT and Stanford, I just wonder if we're really operating at the margins here. That the technology is going to be what the technology is. And maybe you make sure we can retrain people, and we can change education, and maybe we need to worry a bit about taxing this profit away if you're worried about corporate power. But as far as how the technology interacts with the workplace and the tasks people do, can we really influence it that much?I think that's the big question of the day, Jim. Absolutely. This is a book, not a policy memo, because we feel that the bigger issue is to have the discussion. To confront the question, as you pose it, and to discuss, what do we as a society want? How do we develop the technology that we need? Are we solving the problems that we really want to solve? Historically, of course, we didn't have many of those conversations. But we weren't as rich then as we are now. Hopefully we're more aware of our history now and more aware of the impact of these choice points. And so it's exactly to have that discussion and to say, if this is as big as people say, how are we going to move it in various directions?I like, as you know, to propose specific policy. I do think, particularly in Washington, it's the specifics that people want to seize. “What do we mean by surveillance? What do we mean by s safeguards over surveillance? How could you operationalize protections against excessive surveillance? By whom? By employers, by the police, by companies from whom you buy stuff? From your local government?” That conversation still needs to be had. And it's a very big, broad conversation. So let's have it quickly, because the technology is moving very quickly.What does the more recent history of concerns about technology, what lessons should we draw? I think of, I think of nuclear technology, which there are lots of concerns and we pass lots of rules. We basically paused that technology. And now we're sitting here in the, you know, in the 2020s worried about climate change. That, to me, is a recent powerful example of the dangers of trying to slow a technology, delay a technology that may evolve in ways you don't understand, but also can solve problems that we don't understand. It's, to me, are the history of least in the United States of technology over the past half century has been one of being overly cautious, not pedal to the metal gungho, you know, you know, let's, let's just keep going as fast as possible.As I think you may remember, Jim, I'm a big advocate for more science spending and more innovation in some fundamental sense across the whole economy because I think that generates prosperity and jobs. In my previous book, Jump-Starting America, we went through the nuclear history, as you flag. And I think the key thing there is at the beginning of that industry, right after World War II, there was over-optimism on the part of the engineers. The Atomic Energy Commission chair famously promised free electricity, and there was very little discussion about safety. And people who raised the issues of safety were kind of shunted to one side with the result that Three Mile Island a little bit and Chernobyl a lot was a big shock to public consciousness about the technology. I'm in favor of more innovation…I wonder if we've overlearned that lesson, you know? I think we may have overlearned it.Yes. I think that's quite possibly right. And we are not calling for an end to innovation on AI just because somebody made a movie in which AI takes over the world. Not at all. What we're saying is there are choices and you can either go more towards replacing people, that's automation, and more towards new task creation, that's machine usefulness. And that's not a new thing. That's a very old, thousand-year or maybe longer tension we've had in the history of innovations and how we manage them. And we have an opportunity now, because we're a more conscious, aware, and richer society, to try and pull ourselves through various means — and it might not be tax policy, I'll grant you that, but through various means — towards what we want. And I think what we want is more good jobs. We always want more good jobs, Jim. And we always want to produce useful things. We don't want just to replace people for the sake of replacement.Evaluating the Biden administration’s science policySince you brought it up, I'm going to take the opportunity to ask you a final question about some of your other work about trying to create technology hubs across America. It seems like those ideas have to some degree made their way into policy during the Biden administration. What do you think of its efforts on trying to spend more on R&D and trying to spread that spending across America and trying to make sure it's not just Austin and Boston and New York and San Francisco and LA as areas of great innovation?In the Chips and Science Act, there's two parts: chips and science. The part that we are really advocating for is the science part. And it's exactly what you said, Jim, which is you spend more on science, spread it around the country. There are a lot of people in this country who are innovative, want to be innovative. There are some really good resources, private sector, but also public sector, public-sector universities, for example, in almost every state where you could have more innovation in some basic knowledge-creation sense. And that can become commercialized, that can become private initiative, that can generate jobs. That's what we are supporting. And I think the Science Act absolutely did internalize that. In part, because people learned some hard lessons during COVID, for example.The CHIPS Act is not what we were advocating for. And that's going to be really interesting to see how that plays out. That's more, I would say, conventional, somewhat old-fashioned industrial policy: Pick a sector, back a sector, invest in the sector from the public sector perspective. Chips are of course a really important sector, and the discussion of AI is absolutely part about that. And of course we're also worried, in part because of COVID but also because of the rise of China, about the security of supply chains, including chips that are produced in, let's say, parts of Asia. I think there are some grounds for that. There's also some issues, how much does it cost to build a state-of-the-art fab and operate it in the US versus Taiwan or South Korea, or even China for that matter? Those issues need to be confronted and measured. I think it's good that we're having a go. I'm a big believer in more science, more science spending, more responsible deployment of it and more discussion of how to do that. The chips industrial policy, we'll see. I hope something like this works. It would be quite interesting to pursue further, but we have had some bumps in those roads before. This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe
undefined
Apr 20, 2023 • 18min

🚀 Faster, Please! — The Podcast #27

I have many times written about the importance of the story we tell ourselves about the future, especially in big-budget science fiction films. But does all the doom and gloom from Hollywood even matter? And is it driven from creatives at the top or by audience demand? To discuss those questions and more, I'm talking with Sonny Bunch.Sonny is the culture editor for The Bulwark, where he hosts The Bulwark Goes to Hollywood newsletter and podcast.In This Episode* Netflix’s upcoming $200 million techno-pocalyptic movie (1:06)* Why is Hollywood obsessed with dystopia? (6:17)* The solutionism of The Martian (8:48)* Do sci-fi visions of the future even matter? (15:03)Below is an edited transcript of our conversationNetflix’s upcoming $200 million techno-pocalyptic movieJames Pethokoukis: I write a lot about negative future-pessimistic media. Netflix has a big new movie in the works, a $200 million film directed by the Russo brothers, who you may know from the Marvel movies. They’ve got Millie Bobby Brown, Chris Pratt. Big production. It's called The Electric State. And this is a summary of this film: “A runaway teenager and her … robot travel west through a strange USA, where the ruins of gigantic battle drones litter the countryside heaped together with the discarded trash of a high tech consumerist society in decline.” And then it goes on about our “hollow core of civilization has finally caved in.”This might be a fantastic film, and I have a lot of confidence in the Russo Brothers and that budget. Here we are, we have a lot of interesting things cooking in the world from the Musk rockets and AI and huge breakthroughs in biotechnology, and that's the movie they're giving us for $200 million, about the decline of consumerist society. You've been writing a bit about this topic. When does it end?Sonny Bunch: It's interesting because I was thinking about this the other day: Really, what is the only truly utopian vision of the future? It's Star Trek. That's about it. In terms of mass popular entertainment, the only really, truly utopian ideal of the future is Star Trek. Now, there's still conflict in Star Trek. But it is at least a kind of post-scarcity society where folks are interested in exploring the world and bettering everyone. Look, part of this is it is easier to create tension and drama out of things that are bad. And what's the easiest way to look at how things might be bad? Look at what basically works about right now and say, “Well, what if this doesn't work? What if it's actually bad for us?” The idea of Netflix producing a stirring condemnation of consumerist society is kind of funny in and of itself. Netflix is the absolute peak of consumerism.Literally, the mission statement of Netflix is to sit on your couch and consume; consume so much you don't fall asleep. The initial argument for Netflix one of the creators the company made was, “We are trying to win the war against sleep.” They're not winning the war against sleep by encouraging people to create wonderful new advancements of society. It’s just to sit there and passively consume. So it's kind of funny. I like a good dystopian action movie. I can watch those all day long, so I'm probably as much of the problem as anything else. But it's definitely a thing.And it just doesn't seem that hard to me to have some sort of positive message, even if it's overall kind of dystopian or apocalyptic. I just don't see that there's any attempt. It's just full-throated doom.Remember when Interstellar came out? I love Interstellar. Great movie. It is hopeful in a certain way. It's about trying to find new places for Earth to live; it's on the edge of collapse. When Matthew McConaughey's character comes back about a hundred years later because of all the time dilation, humanity has moved up to the space stations that are orbiting and people have been saved. As far as these things go, it's actually a fairly positive message. Except there was an undercurrent from some critics who were like, “You know, this means that like billions of people died, right? They didn't save more than a handful of folks up on those space stations. Most of humanity is dead or dying.” And I was like, yeah, but they didn't focus on that. It's still pretty positive.I would counter argue that one of the themes of that movie is at some point we turned our back on progress. It's like society be has become anti-technology. To me, that movie says if we had not abandoned technological progress, maybe this huge disaster which has befallen the Earth, maybe we could have fixed it. But now it's too late. Now we have no other choice but to head to the stars, which is something we probably should have been thinking about anyways. I think a superficial viewing of that movie is that it is pessimistic. And I think you're right. I think, fundamentally, that is a future pro-progress film.Why is Hollywood obsessed with dystopia?But you mentioned Star Trek at the beginning. Why do you think Hollywood's sci-fi, at least, has become almost completely obsessed with the dystopian and apocalyptic? Is it just that it's easy to make that kind of film? Or is it reflecting something in our society?I don’t know. What do we like to say? Everybody likes to think they're living in the end times. Everybody likes to think that they are important enough to see the end of the world. This is a constant through human civilization. Everybody thinks that the end is just around the corner, and they're the last generation that will see the world. And now we have the technology and the filmmaking ability to actually realize that world we have; we have the ability to destroy the world on film. (In real life, too, if somebody really wanted to get crazy, but it's much easier and safer to do on film.) And it is easier. It's an easier story to tell. It's an easier story to portray because if you live in a post-apocalyptic society, there are a lot fewer of? Extras. You don't have to fill stadiums full of people. You don't have to have crowded streets with everybody walking around. You just have somebody, oh,You have empty streets and a little bit of trash, and you have a set.You’ve got empty streets. This is the Russo brothers. They're doing it all on green and blue screens. You’ve just got Millie Bobby Brown walking around, kicking over a trashcan every now and again, and it's fine. I do think that there's an inherent narcissism to all of this: We have achieved the peak of civilization. What's the line in The Matrix when Agent Smith is talking about how they designed the Matrix?We took the peak of civilization.We took the peak of human civilization, but really once we started thinking for you, it became our civilization. And what did they pick? They picked 1999, when that movie came out. That is the constant refrain in all of this stuff: We are the peak, things are to go precipitously downhill, enjoy it while it lasts. It is inherently dramatic, in a certain way, to imagine having to come back from a fall of a sort. But the fact that it is so constant just leads me to believe that it really is quite silly.The solutionism of The MartianYou mentioned Star Trek, but I would also say a movie like The Martian, which I also view as positive, pro-technology, pro-solutions — we can solve problems. And to me, that's what's wrong with a lot of these other films: we end up not being able to solve any problems. Probably our attempts to solve the problems only make things worse. And that is, to me, a rare example of a problem-solving movie that's plenty dramatic. There's no obvious villain, other than perhaps the planet Mars itself and space. To me, it's just a fundamental lack of effort. And again, I don't know if it's easy, it's cheaper in some ways, it also kind of reflects the views of the people who make the movies. But it's just shocking that there's not more made, because we do have a few examples of being able to do it properly.It is interesting. I wrote a piece for the Washington Post a few years back about how environmentalists make good movie villains. And the reason that they make good movie villains is because these are the people who the writers can really identify with. The whole idea of creating a realistic villain, if you want a realistic villain, is it's somebody you can identify with, somebody whose goals you sympathize with. And many of these villains — for instance Thanos in the first run of MCU movies, his whole thing is, “I lived through environmental collapse, many people died, it drove me insane, and I'm going to eliminate half of the universe so to avoid this problem again.” Which seems to defeat the purpose, but whatever. The reason he is sympathetic to the people who are writing these movies is that they look around and they see, “Global warming. It’s happening. It's here. We're all going die. There's going to be crop collapses. The population bomb is going off. We're never going to make it.” And nevermind that none of this has come to pass in the 50 to 100 to 1,000 years that we've been talking about it. It is still an ever-present terror. And if you're a person of a certain worldview, I can see why it would be appealing to try and work through it. The Martian is interesting, too, because The Martian is kind of techno-utopian in the sense that it posits a world in which all of the world's powers can work together. There's a very specific subplot with China—which at the time was doing more space shuttle, rocket exploration-type stuff than we were—working hand-in-hand with China to kind of make it all work out. I'm curious to see how that specific subplot would play today, if that is a thing that would be in the novel or the movie, or if it would not be.The relationship between the nations might have been portrayed a bit testier. That movie came out — the novel came out a bit earlier, but certainly the film came out just as things were starting to turn.Also, just in terms of the business of Hollywood, it's an interesting movie. Because that's a movie that came out right when Hollywood was really trying to make inroads into China, was working hand-in-hand with the Chinese government to get script approval and make sure that their films got a release there. And of course, it is impossible — this is the one thing I say over and over again to people — it is impossible to understand the artistry of Hollywood without understanding the business of Hollywood. You cannot understand why movies get made or how they get made or how they're received by Hollywood without understanding what is actually happening in the business of Hollywood. And at that moment in time, China was a market ripe for the plucking. Again, things have changed a bit in the last few years. I would be curious to see how that played now.If I were writing a script and I wanted it to have some sort of internal logic and I wrote that the driving force from my villain is that he needs to kill half of every living being in the universe so all of life doesn't consume all the resources, that idea would die immediately. If I brainstormed that idea, it wouldn't last 30 seconds. To me, it sort of gets at the ethos in Hollywood in which someone didn’t say, “We need to come up with a better motivation for the film, because that's ridiculous.”Two things here. One, it's very funny, the original comic book motivation — I'm going to put on my nerd hat here for a second — the original comic book motivation for Thanos actually weirdly makes more sense: He just wants to kill half the universe to please his girlfriend, death, the manifestation of death. That's what he wants to do. I actually find that to be much more sensible than what they wound up with. But the second thing is that this is my broad case for [why] Hollywood should hire more conservative screenwriters. Because if you really want your villains to be a villainous and for the industry to kind of reflect your own beliefs, you need like oil barons who aren't cartoonishly mustache-twirling. You need people who are out there like, “Yes, we're going to frack because that's what's going to power the hospital for the children. We're going to build nuclear power plants and we're going to dump the waste in this nature preserve because that's the only way to keep the bread factory running for the orphans.” Things like that.Do sci-fi visions of the future even matter?Does any of this matter? Does it matter how we portray the future? Does it matter how we portray—or perhaps in this case we don't really portray—innovators or explorers? Is this something that's just confined to our media consumption habits? Or does it have a bigger impact on the world? Obviously I think it does, but I'm open to someone arguing that it doesn't.I go back and forth on this question, honestly. I really go back and forth on this, because I do think there's a chicken and an egg issue here. I think that the art of a time reflects the sensibility of the time. I think that is mostly how the cause and effect works, but I also do think that a society chooses how to live by the stories they tell themselves in a very real way. I think this is why myth is important. This is why the stories we tell children matter. I do think that the art that we consume does help shape how we choose to live. I don't want to mush-mouth weasel my way out of this, but I do think it's a very open and interesting question. Depending on the day of the week, I can argue either side of it.I did an interview early on in my Substack with Ronald D. Moore, who has this great series For All Mankind. It shows a space race that never ends. It creates a really interesting alt-reality, that while there are still problems, we're better off for continuing to head into space. It doesn't seem that hard. I asked him some of the exact same questions I'm asking you. He was like, “It's economics. People think that makes money and until it stops making money, we're going to keep getting more of it.” I would like to think that there'd be something more to it than that, that film studios, if they have the opportunity to make something that can make money, but also doesn't completely reflect some sort of cultural exhaustion, that they would do it. But maybe I'm just too optimistic.This very much is my point with China: Everything that Hollywood makes is based on the last thing before that made money until none of that stuff is making money. And then they have to find something else. This is why you had a bunch of…You're still getting more zombie movies with The Last of Us. I thought that had just about died out.No, The Last of Us, huge hit. 30 million people watching on HBO across its various platforms. We're going to get more of The Last of Us, more zombies: The Walking Dead, 17 more spinoffs of that. We’ll see. This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app