In Our Time: Science cover image

In Our Time: Science

Latest episodes

undefined
Jun 17, 2010 • 42min

The Neanderthals

Experts discuss the lives and behaviors of Neanderthals, their extinction, the impact of climate change on human evolution, the relationship between Neanderthals and Homo sapiens, the range and boundaries of Neanderthals, their behaviors and societal structure, and the language abilities and possible interbreeding with Homo sapiens.
undefined
May 20, 2010 • 42min

The Cavendish Family in Science

From the 1600s to the 1800s, scientific research in Britain was not yet a professional, publicly-funded career.So the wealth, status and freedom enjoyed by British aristocrats gave them the opportunity to play an important role in pushing science forwards - whether as patrons or practitioners.The Cavendish family produced a whole succession of such figures.In the 1600s, the mathematician Sir Charles Cavendish and his brother William collected telescopes and mathematical treatises, and promoted dialogue between British and Continental thinkers. They brought Margaret Cavendish, William's second wife, into their discussions and researches, and she went on to become a visionary, if eccentric, science writer, unafraid to take on towering figures of the day like Robert Hooke.In the 1700s, the brothers' cousin's great-grandson, Lord Charles Cavendish, emerged as a leading light of the Royal Society.Underpinned by his rich inheritance, Charles' son Henry became one of the great experimental scientists of the English Enlightenment.And in the 1800s, William Cavendish, Henry's cousin's grandson, personally funded the establishment of Cambridge University's Cavendish Laboratory. In subsequent decades, the Lab become the site of more great breakthroughs.With:Jim BennettDirector of the Museum of the History of Science at the University of OxfordPatricia FaraSenior Tutor of Clare College, University of CambridgeSimon SchafferProfessor of History of Science at the University of Cambridge and Fellow of Darwin College, CambridgeProducer - Phil Tinline.
undefined
May 6, 2010 • 42min

The Cool Universe

The Cool Universe is the name astronomers give to the matter between the stars.These great clouds of dust and gas are not hot enough to be detected by optical telescopes.But over the last few decades, they have increasingly become the focus of infrared telescopy.Astronomers had long encountered dark, apparently starless patches in the night sky. When they discovered that these were actually areas obscured by dust, they found a way to see through these vexing barriers, using infrared telescopes, to the light beyond.However, more recently, the dust itself has become a source of fascination.The picture now being revealed by infrared astronomy is of a universe that is dynamic.In this dynamic universe, matter is recycled - and so the dust and gas of the Cool Universe play a vital role. They are the material from which the stars are created, and into which they finally disintegrate, enriching the reservoir of cool matter from which new stars will eventually be formed. As a result of the new research, we are now beginning to see first-hand the way our planet was formed when the solar system was born.With:Carolin CrawfordMember of the Institute of Astronomy, and Fellow of Emmanuel College, at the University of CambridgePaul MurdinVisiting Professor of Astronomy at Liverpool John Moores University's Astronomy Research InstituteMichael Rowan-RobinsonProfessor of Astrophysics at Imperial College, LondonProducer: Phil Tinline.
undefined
Mar 4, 2010 • 42min

The Infant Brain

Melvyn Bragg and guests Usha Goswami, Annette Karmiloff-Smith and Denis Mareschal discuss what new research reveals about the infant brain.For obvious reasons, what happens in the minds of very young, pre-verbal children is elusive. But over the last century, the psychology of early childhood has become a major subject of study. Some scientists and researchers have argued that children develop skills only gradually, others that many of our mental attributes are innate. Sigmund Freud concluded that infants didn't differentiate themselves from their environment. The pioneering Swiss child psychologist Jean Piaget thought babies' perception of the world began as a 'blooming, buzzing confusion' of colour, light and sound, before they developed a more sophisticated worldview, first through the senses and later through symbol. More recent scholars such as the leading American theoretical linguist Noam Chomsky have argued that the fundamentals of language are there from birth. Chomsky has famously argued that all humans have an innate, universally applicable grammar.Over the last ten to twenty years, new research has shed fresh light on important aspects of the infant brain which have long been shrouded in mystery or mired in dispute, from the way we start to learn to speak to the earliest understanding that other people have their own minds. With:Usha Goswami, Professor of Education at the University of Cambridge and Director of its Centre for Neuroscience in Education Annette Karmiloff-Smith, Professorial Research Fellow at the Centre for Brain and Cognitive Development at the Department of Psychological Sciences, Birkbeck College, University of LondonDenis Mareschal, Professor of Psychology at the Centre for Brain and Cognitive Development at Birkbeck College, University of London.
undefined
Feb 11, 2010 • 42min

Mathematics' Unintended Consequences

Melvyn Bragg and guests John Barrow, Colva Roney-Dougal and Marcus du Sautoy explore the unintended consequences of mathematical discoveries, from the computer to online encryption, to alternating current and predicting the path of asteroids.In his book The Mathematician's Apology (1941), the Cambridge mathematician GH Hardy expressed his reverence for pure maths, and celebrated its uselessness in the real world. Yet one of the branches of pure mathematics in which Hardy excelled was number theory, and it was this field which played a major role in the work of his younger colleague, Alan Turing, as he worked first to crack Nazi codes at Bletchley Park and then on one of the first computers.Melvyn Bragg and guests explore the many surprising and completely unintended uses to which mathematical discoveries have been put. These include:The cubic equations which led, after 400 years, to the development of alternating current - and the electric chair.The centuries-old work on games of chance which eventually contributed to the birth of population statistics.The discovery of non-Euclidean geometry, which crucially provided an 'off-the-shelf' solution which helped Albert Einstein forge his theory of relativity.The 17th-century theorem which became the basis for credit card encryption.In the light of these stories, Melvyn and his guests discuss how and why pure mathematics has had such a range of unintended consequences.John Barrow is Professor of Mathematical Sciences at the University of Cambridge and Professor of Geometry at Gresham College, London; Colva Roney-Dougal is Lecturer in Pure Mathematics at the University of St Andrews; Marcus du Sautoy is Charles Simonyi Professor for the Public Understanding of Science and Professor of Mathematics at the University of Oxford.
undefined
Jan 7, 2010 • 42min

The Royal Society and British Science: Episode 4

As part of the BBC's year of science programming, Melvyn Bragg looks at the history of the oldest scientific learned society of them all: the Royal Society. The horrors of the First World War were a shocking indictment of the power of science. Picking up the thread at this hiatus in scientific optimism, this programme, recorded in the current home of the Royal Society in Carlton House Terrace in London, looks at the more subtle, discreet role the Society played in the 20th century, such as secretly arranging for refugee scientists to flee Germany, co-ordinating international scientific missions during the Cold War and quietly distributing government grant money to fund the brightest young researchers in the land. As ever more important scientific issues face the world and Britain today, the programme asks how well placed the Royal Society is to take an important lead in the future.
undefined
Jan 6, 2010 • 42min

The Royal Society and British Science: Episode 3

As part of the BBC's year of science programming, Melvyn Bragg looks at the history of the oldest scientific learned society of them all: the Royal Society. The 19th century blooms scientifically with numerous alternative, specialist learned societies and associations, all threatening the Royal Society's pre-eminence. Attempts to reform the membership criteria - marking scientific leadership's painful transition from patronage to expertise - are troubled, and organisations such as the British Association for the Advancement of Science (now the BSA) excite and enliven scientific discourse outside of London. Science becomes a realistic career and a path of improvement, and by the time HG Wells writes science fiction at the end of the 19th century, there are sufficient numbers of interested, informed readers to suggest that Edwardian society contained the beginnings of a scientific society.
undefined
Jan 5, 2010 • 42min

The Royal Society and British Science: Episode 2

As part of the BBC's year of science programming, Melvyn Bragg looks at the history of the oldest scientific learned society of them all: the Royal Society. Programme two begins in the coffee house Isaac Newton and the fellows of the early 18th century frequented. At the Royal Observatory, Greenwich, we learn how Newton's feud with the Astronomer Royal John Flamsteed tested the lines between government-funded research and public access. In the age of exploration, senior fellows accompany naval expeditions, such as Cook's expedition to Tahiti and subsequent discovery of Australia. International relations are fostered between scientists such as Benjamin Franklin, whose house in London serves as live-in lab and de facto American embassy. By the end of the century the President, Sir Joseph Banks, successfully embeds the Royal Society in the imperial bureaucratic hub of the new Somerset House. But while senior fellows concentrated on foreign fields, a more radical, dissident science and manufacturing base wrought the Industrial Revolution right under their noses.
undefined
Jan 4, 2010 • 42min

The Royal Society and British Science: Episode 1

As part of the BBC's year of science programming, Melvyn Bragg looks at the history of the oldest scientific learned society of them all: the Royal Society. Melvyn travels to Wadham College, Oxford, where under the shadow of the English Civil War, the young Christopher Wren and friends experimented in the garden of their inspirational college warden, John Wilkins. Back in London, as Charles II is brought to the throne from exile, the new Society is formally founded one night in Gresham College. When London burns six years later, it is two of the key early Fellows of the Society who are charged with its rebuilding. And, as Melvyn finds out, in the secret observatory in The Monument to the fire, it is science which flavours their plans.
undefined
Dec 10, 2009 • 42min

Pythagoras

Melvyn Bragg and guests Serafina Cuomo, John O'Connor and Ian Stewart discuss the ideas and influence of the Greek mathematician Pythagoras and his followers, the Pythagoreans.The Ancient Greek mathematician Pythagoras is probably best known for the theorem concerning right-angled triangles that bears his name. However, it is not certain that he actually developed this idea; indeed, some scholars have questioned not only his true intellectual achievements, but whether he ever existed. We do know that a group of people who said they were followers of his - the Pythagoreans - emerged around the fifth century BC. Melvyn Bragg and his guests discuss what we do and don't know about this legendary figure and his followers, and explore the ideas associated with them. Some Pythagoreans, such as Philolaus and Archytas, were major mathematical figures in their own right. The central Pythagorean idea was that number had the capacity to explain the truths of the world. This was as much a mystical belief as a mathematical one, encompassing numerological notions about the 'character' of specific numbers. Moreover, the Pythagoreans lived in accordance with a bizarre code which dictated everything from what they could eat to how they should wash. Nonetheless, Pythagorean ideas, centred on their theory of number, have had a profound impact on Western science and philosophy, from Plato through astronomers like Copernicus to the present day.Serafina Cuomo is Reader in Roman History at Birkbeck College, University of London; John O'Connor is Senior Lecturer in Mathematics at the University of Saint Andrews; Ian Stewart is Emeritus Professor of Mathematics at the University of Warwick.

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app