AWS for Software Companies Podcast

AWS - Amazon Web Services
undefined
Aug 20, 2025 • 31min

Ep134: Prime Opportunities for ISVs by Leveraging Generative AI

AWS executives reveal how generative AI is fundamentally reshaping ISV business models, from pricing strategies to go-to-market approaches, and provide actionable insights for software companies navigating this transformation.Topics Include:Alayna Broaderson and Andy Perkins introduce AWS Infrastructure Partnerships and ISV SalesGenerative AI profoundly changing how ISVs build, deliver and market software productsTwo ISV categories emerging: established SaaS companies versus pure gen AI startupsLegacy SaaS firms struggle with infrastructure modernization and potential revenue cannibalizationPure gen AI companies face scaling challenges, reliability issues and cost optimizationRevenue models shifting from subscription-based to consumption-based pricing per token/prompt/taskFuture-proofing architecture critical as technology evolves rapidly like F-35 fighter jetsData becoming key differentiator, especially domain-specific datasets in healthcare and legalBalancing cost, accuracy, latency and customer experience creates complex optimization challengesMultiple specialized models replacing single solutions, with agentic AI accelerating this trendHuman capital challenges include retraining engineering teams and finding expensive AI talentSecurity, compliance and explainability now mandatory - no more black box solutionsEnterprise customers struggle with data organization and quantifying clear gen AI ROIISV pricing models evolving with tiered structures and targeted vertical use casesTraditional SaaS playbooks failing in generative AI landscape due to ROI uncertaintyPOC-based go-to-market with free trials and case study selling proving most effectivePricing strategies include AI gates, credit systems and separate SKUs for servicesCustomer trust requires proactive security messaging and auditable, transparent AI solutionsModular architecture enables evolution as new technologies emerge in fast-changing marketAWS positioning as ultimate gen AI toolkit partner with ISV collaboration opportunitiesParticipants:Alayna Broaderson - Sr Manager, Infrastructure Technology Partnership, Amazon Web ServicesAndy Perkins - General Manager, US ISV, Amazon Web ServicesSee how Amazon Web Services gives you the freedom to migrate, innovate, and scale your software company at https://aws.amazon.com/isv/
undefined
Aug 18, 2025 • 23min

Ep133: Enabling Better Customer Experiences with Amazon Q Index w/ PagerDuty and Zoom

Hear how PagerDuty and Zoom built successful AI products using Amazon Q-Index to solve real customer problems like incident response and meeting intelligence, while sharing practical lessons from their early adoption journey.Topics Include:David Gordon introduces AWS Q-Business partnerships with PagerDuty and ZoomMeet Everaldo Aguiar: PagerDuty's Applied AI leader with academia and enterprise backgroundPaul Magnaghi from Zoom brings AI platform scaling experience from SeattleQ-Business launched over a year ago as managed generative AI servicePlatform enables agentic experiences: content discovery, analysis, and process automationBuilt on AWS Bedrock with enterprise guardrails and data source integrationPartners wanted backend capabilities but preferred their own UI and modelsQ-Index provides vector database functionality for ISV partner integrationsEveraldo explains PagerDuty's evolution from traditional ML to generative AI solutionsHistorical challenges: alert fatigue, noise reduction using machine learning approachesNew gen AI opportunities: incident context, relevant data surfacing, automated postmortemsEngineering teams faced learning curve with agents and high-latency user experiencesPaul discusses Zoom's existing AI: virtual backgrounds and voice isolation technologyAI Companion strategy focused on simplicity during complex generative AI adoptionProblem identified: valuable meeting conversations disappear after Zoom calls endCustomer feedback revealed need for enterprise data integration beyond basic summariesGoal: combine unstructured conversations with structured enterprise data seamlesslyPagerDuty Advanced provides agentic AI for on-call engineers during incidentsQ-Index integration accesses internal documentation: Confluence pages, runbooks, proceduresDemo shows Slack integration pulling relevant incident response documentation automaticallyAccess control lists ensure users see only data they're authorized to accessZoom's AI companion panel enables real-time meeting questions and summariesExample use cases: decision tracking, incident analysis, action item identificationAdvice for starting: standardize practices and create internal development templatesSingle data access point reduces legal and security evaluation overheadCenter of excellence approach helps teams move quickly across product divisionsCut through generative AI buzzwords to focus on real user valueFederated AWS Bedrock architecture provides model choice and flexibility meeting customersCustomer trust alignment between Zoom conversations and AWS data handlingGetting started: PagerDuty Advance available now, Zoom AI free with paid add-onsParticipants:Everaldo Aguiar – Senior Engineering Manager, Applied AI, PagerDutyPaul Magnaghi – Head of AI & ISV Go To Market, ZoomDavid Gordon - Global Business Development, Amazon Q for Business. Amazon Web ServicesFurther Links:PagerDuty Website, LinkedIn & AWS MarketplaceZoom Website, LinkedIn & AWS MarketplaceSee how Amazon Web Services gives you the freedom to migrate, innovate, and scale your software company at https://aws.amazon.com/isv/
undefined
Aug 15, 2025 • 32min

Ep132: Security vs Productivity – Winning the AI Arms-Race with Teleport and AWS

Teleport Co-Founder and CEO Ev Kontsevoy discusses the security vs productivity trade-off that plagues growing companies and how Teleport's trusted computing model protects against the exponential growth of cybersecurity threats.Topics Include:Teleport CEO explains how to make infrastructure "nearly unhackable" through trusted computingTraditional security vs productivity trade-off: high security kills team efficiencyCompanies buy every security solution but still get told they're at riskWhy "crown jewels" thinking fails: computers should protect everything at scaleModern infrastructure has too many access paths to enumerate and secureApple's PCC specification shows trusted computing working in real production environmentsAI revolutionizes both offensive and defensive cybersecurity capabilities for everyone80% of companies can't guarantee they've removed all ex-employee accessIdentity fragmentation across systems creates anonymous relationships and security gapsHuman error probability grows exponentially as companies scale in three dimensionsYour laptop already demonstrates trusted computing: seamless access without constant loginsApple ecosystem shows device trust at scale through secure enclavesAI agents need trusted identities just like humans and machinesAWS marketplace partnership accelerates deals and provides strategic account insightsHire someone who understands partnership dynamics before starting with AWSGenerative AI will make identity attacks cheaper and faster than everSecurity responsibility shifting from IT teams to platform engineering teamsTeleport's "steady state invariant": infrastructure locked down except during authorized workTemporary access granted through tickets, then automatically revoked after completionLegacy systems and IoT devices require extending trust models beyond cloud-nativeParticipants:Ev Kontsevoy – Co-Founder and CEO, TeleportFurther Links:Teleport WebsiteTeleport AWS MarketplaceSee how Amazon Web Services gives you the freedom to migrate, innovate, and scale your software company at https://aws.amazon.com/isv/
undefined
Aug 13, 2025 • 15min

Ep131: Preventing Identity Theft at Scale: How DTEX Systems Detects and Disarms Insider Threats with Amazon Bedrock

Raj Koo, CTO of DTEX Systems, discusses how their enterprise-grade generative AI platform detects and disarms insider threats and enables them to stay ahead of evolving risks.Topics Include:Raj Koo, CTO of DTEX Systems, joins from Adelaide to discuss insider threat detectionDTEX evolved from Adelaide startup to Bay Area headquarters, serving Fortune 500 companiesCompany specializes in understanding human behavior and intention behind insider threatsMarket shifting beyond cyber indicators to focus on behavioral analysis and detectionRecent case: US citizen sold identity to North Korean DPRK IT workersForeign entities used stolen credentials to infiltrate American companies undetectedDTEX's behavioral detection systems helped identify this sophisticated identity theft operationGenerative AI becomes double-edged sword - used by both threat actors and defendersBad actors use AI for fake resumes and deepfake interviewsDTEX uses traditional machine learning for risk modeling, GenAI for analyst interpretationGoal is empowering security analysts to work faster, not replacing human expertiseAWS GenAI Innovation Center helped develop guardrails and usage boundaries for enterpriseChallenge: enterprises must follow rules while hackers operate without ethical constraintsDTEX gains advantage through proprietary datasets unavailable to public AI modelsAWS Bedrock partnership enables private, co-located language models for data securityPrivate preview launched February 2024 with AWS Innovation Center acceleration supportSoftware leaders should prioritize privacy-by-design from day one of GenAI adoptionFuture threat: information sharing shifts from files to AI-powered data queriesMonitoring who asks what questions of AI systems becomes critical security concernDTEX contributes to OpenSearch development while building vector databases for analysisParticipants:Rajan Koo – Chief Technology Officer, DTEX SystemsFurther Links:DTEX Systems WebsiteDTEX Systems AWS MarketplaceSee how Amazon Web Services gives you the freedom to migrate, innovate, and scale your software company at https://aws.amazon.com/isv/
undefined
Aug 11, 2025 • 31min

Ep130: Agentic AI - Transforming Enterprise Technology with leaders from C3 AI, Resolve AI and Scale AI

Enterprise AI leaders from C3 AI, Resolve AI, and Scale AI reveal how Fortune 100 companies are successfully scaling agentic AI from pilots to production and share secrets for successful AI transformation.Topics Include:Panel introduces three AI leaders from Resolve AI, C3 AI, and Scale AIResolve AI builds autonomous site reliability engineers for production incident responseC3 AI provides full-stack platform for developing enterprise agentic AI workflowsScale AI helps Fortune 100 companies adopt agents with private data integrationMoving from AI pilots to production requires custom solutions, not shrink-wrap softwareSuccess demands working directly with customers to understand their specific workflowsAll enterprise AI solutions need well-curated access to internal data and resourcesSoftware engineering has permanently shifted to agentic coding with no going backAI agents rapidly improving in reasoning, tool use, and contextual understandingIndustry moving from simple co-pilots to agents solving complex multi-step problemsSpiros coins new concept: evolving from "systems of record" to "systems of knowledge"Democratized development platforms let enterprises declare their own agent workflowsSemantic business layers enable agents to understand domain-specific enterprise operationsTrust and observability remain major barriers to enterprise agent adoptionOversight layers essential for agents making longer-horizon autonomous business decisionsPerformance tracking and calibration systems needed like MLOps for reasoning chainsCEO-level top-down support required for successful AI transformation initiativesTraditional per-seat SaaS pricing models completely broken for agentic AI solutionsIndustry shifting toward outcome-based and work-completion pricing models insteadReal examples shared: agent collaboration in production engineering and sales automationParticipants:Nikhil Krishnan – SVP & Chief Technology Officer, Data Science, C3 AISpiros Xanthos – Founder and CEO, Resolve AIVijay Karunamurthy – Head of Engineering, Product and Design / Field Chief Technology Officer, Scale AIAndy Perkins – GM, US ISV Sales – Data, Analytics, GenAI, Amazon Web ServicesFurther Links:C3 – Website – AWS MarketplaceResolve AI – Website – AWS MarketplaceScale AI – Website – AWS MarketplaceSee how Amazon Web Services gives you the freedom to migrate, innovate, and scale your software company at https://aws.amazon.com/isv/
undefined
Aug 8, 2025 • 28min

Ep129: Taking Agentic AI Beyond the Prototype w Automation Anywhere

Industry leaders from Automation Anywhere and AWS discuss how modern customer data collection has evolved, and practical strategies for implementing enterprise automation at scale.Topics Include:Automation Anywhere and AWS experts discuss modern enterprise automation strategiesTraditional profiting strategies may not work with today's changing business modelsCustomer data collection methods have evolved across multiple platforms significantlyModern verification processes include automated validation systems and streamlined timelinesBackground check automation is increasingly handled by AI-powered models and systemsStanford's "Wonder Bread" research paper introduced revolutionary enterprise process observation technologyWonder Bread demonstrated AI systems watching and automatically learning hospital workflowsThe technology can author workflows by observing real enterprise processesEnterprise Process Management built around observed behaviors shows promising resultsVerification challenges exist since Wonder Bread research isn't widely publicized yetProcess observation technology could transform how enterprises handle workflow creationSalesforce Wizard Interface dominates many current automation implementations in enterprisesSalesforce Agent Codes offer alternative approaches to traditional automation methodsAWS platform selection involves careful consideration of enterprise integration needsDemo implementations showcase real-world timeline expectations and deployment maturity levelsCurrent automation solutions have reached significant scale across various industriesWorkflow automation differs fundamentally from true agentic intelligence systems capabilitiesAgentic AI demonstrates autonomous decision-making beyond simple rule-based automation processesUnderstanding this distinction helps organizations choose appropriate technology approaches effectivelySession concludes with clarity on modern automation landscape and implementation strategiesParticipants:Pratyush Garikapati – Director of Products, Automation AnywhereSreenath Gotur – Snr Generative AI Specialist, Amazon Web ServicesFurther Links:Automation Anywhere websiteAutomation Anywhere – AWS MarketplaceSee how Amazon Web Services gives you the freedom to migrate, innovate, and scale your software company at https://aws.amazon.com/isv/
undefined
Aug 6, 2025 • 26min

Ep128: Co-Innovation in the Age of Agentic AI with Mark Relph of AWS

AWS's Mark Relph draws fascinating parallels between today's AI revolution and the 1900s agricultural mechanization that delivered 2,000% productivity gains, while exploring how agentic AI will fundamentally reshape every aspect of software business models.Topics Include:Mark Relph directs AWS's data and AI partner go-to-market strategy teamHis role focuses on making ISV partners a force multiplier for customer successPreviously ran go-to-market for Amazon Bedrock, AWS's fastest growing service everCurrent AI adoption pace exceeds even the early cloud computing boom yearsHistorical parallel: 1900s agricultural mechanization delivered 2,000% productivity gains and 95% resource reductionFirst commercial self-propelled farming equipment revolutionized entire economies and never looked back500 machines formed the "Harvest Brigade" during WWII, harvesting from Texas to CanadaMark has spoken to 600+ AWS customers about GenAI over two yearsOrganizations range from AI pioneers to those still "fending off pirates" internallyGenAI has become a phenomenal assistant within organizations for content and automationAWS's AI stack has three layers: infrastructure, Bedrock, and applicationsBottom layer provides complete control over training, inference, and custom applicationsMiddle layer Bedrock serves as the "operating system" for generative AI applicationsTop layer offers ready-to-use AI through Q assistants and productivity toolsAI systems are rapidly becoming more complex with multiple model chainsMany current "agents" are just really, really long prompts (Mark's hot take)Task-specific models are emerging as one size won't fit all use casesEvolution moves from human-driven AI to agent-assisted to fully autonomous agentsAgent readiness requires APIs that allow software to interact autonomouslyTraditional UIs become unnecessary when agents interface directly with systemsCore competencies shift when AI handles the actual "doing" of tasksSales and marketing must adapt to agents delivering outcomes autonomouslyGo-to-market strategies need complete rethinking for an agentic worldThe agentic age is upon us and AWS partners should shape the futureParticipants:Mark Relph – Director – Data & AI Partner Go-To-Market, Amazon Web ServicesSee how Amazon Web Services gives you the freedom to migrate, innovate, and scale your software company at https://aws.amazon.com/isv/
undefined
Aug 4, 2025 • 50min

Ep127: Enabling AI Acceleration at Scale - How Celonis Leverages Amazon Bedrock

Industry leaders from Celonis and AWS explain why 2025 marks the inflection point for agentic AI and how early adopters are gaining significant competitive advantages in efficiency and innovation.Topics Include:AWS's Cristen Hughes and Celonis's Jeff Naughton discuss AI agent transformationAndy Jassy declares AI agents will fundamentally change how we workThree key trends make AI agents practical: smarter models, longer tasks, cheaper costsAI now beats humans on complex benchmarks for the first time everClaude 3.7 cracked graduate-level reasoning where humans previously dominated completelyAI evolved from brief interactions to managing sustained multi-step complex workflowsProcessing costs plummeted 99.7% making enterprise-grade AI economically viable at scaleWe're transitioning from 2023's adaptation era to 2025's human-AI collaboration eraBy 2028, AI will suggest actions to humans rather than vice versaAgents are autonomous software that plan, act, and reason independently with minimal interventionAgent workflow: receive human request, create plan, execute actions, review, adjust, deliverFour agent components: brain (LLM), memory (context), actions (tools), persona (role definition)AWS offers three building approaches: ready-made solutions, managed platform, DIY developmentKey enterprise applications: software development acceleration, customer care automation, knowledge work optimizationManual processes like accounts payable offer huge transformation opportunities through intelligent automationDeep process analysis is critical before deploying agents for maximum effectivenessCelonis pioneered process mining to help enterprises understand their actual workflow realitiesCompanies are collections of interacting processes that agents need proper context to navigateProcess intelligence provides agents with placement guidance, data feeds, monitoring, and workflow directionCelonis-AWS partnership demonstrates order management agents that automatically handle at-risk situationsParticipants:Jeff Naughton – SVP and Fellow, CelonisCristen Hughes – Solutions Architecture Leader, ISV, North America, Amazon Web ServicesFurther Links:Celonis WebsiteCelonis on AWS MarketplaceSee how Amazon Web Services gives you the freedom to migrate, innovate, and scale your software company at https://aws.amazon.com/isv/
undefined
Aug 1, 2025 • 14min

Ep126: Using AWS to Transform Customer Interactions with Glia

Justin DiPietro, Co-Founder & Chief Strategy Officer of Glia, shares how they are leveraging AI to enhance the customer experience in the highly regulated world of financial institutions.Topics Include:Glia provides voice, digital, and AI services for customer-facing and internal operationsBuilt on "channel-less architecture" unlike traditional contact centers that added channels sequentiallyOne interaction can move seamlessly between channels (voice, chat, SMS, social)AI applies across all channels simultaneously rather than per individual channel700 customers, primarily banks and credit unions, 370 employees, headquartered in New YorkTargets 3,500 banks and credit unions across the United States marketFocuses exclusively on financial services and other regulated industriesAI for regulated industries requires different approach than non-regulated businessesTraditional contact centers had trade-off between cost and quality of serviceAI enables higher quality while simultaneously decreasing costs for contact centersNumber one reason people call banks: "What's my balance?" (20% of calls)Financial services require 100% accuracy, not 99.999% due to trust requirementsUses AWS exclusively for security, reliability, and future-oriented technology accessReal-time system requires triple-hot redundancy; seconds matter for live callsWorks with Bedrock team; customers certify Bedrock rather than individual featuresShowed examples of competitors' AI giving illegal million-dollar loans at 0%"Responsible AI" separates probabilistic understanding from deterministic responses to customersUses three model types: client models, network models, and protective modelsTraditional NLP had 50% accuracy; their LLM approach achieves 100% understandingPolicy is "use Nova unless" they can't, primarily for speed benefitsParticipants:Justin DiPietro – Co-Founder & Chief Strategy Officer, GliaFurther Links:Glia WebsiteGlia AWS MarketplaceSee how Amazon Web Services gives you the freedom to migrate, innovate, and scale your software company at https://aws.amazon.com/isv/
undefined
Jul 30, 2025 • 26min

Ep125: Bridging the gap between requirements and budget - Better data while still controlling costs

Ed Bailey, Field CISO at Cribl, shares how Cribl and AWS are helping customers rethink their data strategy by making it easier to modernize, reduce complexity, and unlock long-term flexibility.Topics Include:Ed Bailey introduces topic: bridging gap between security data requirements and budgetCompanies face mismatch: 10TB data needs vs 5TB licensing budget constraintsData volumes growing exponentially while budgets remain relatively flat year-over-yearIT security data differs from BI: enormous volume, variety, complexityMany companies discover 600+ data sources during SIEM migration projects50% of SIEM data remains un-accessed within 90 days of ingestionComplex data collection architectures break frequently and require excessive maintenanceTeams spend 80% time collecting data, only 20% analyzing for valueData collection and storage are costs; analytics and insights provide business valuePoor data quality creates operational chaos requiring dozens of browser tabsSOC analysts struggle with context switching across multiple disconnected systemsTraditional vendor approach: "give us all data, we'll solve problems" is outdatedData modernization requires sharing information widely across organizational business unitsData maturity model progression: patchwork → efficiency → optimization → innovationData tiering strategy: route expensive SIEM data vs cheaper data lake storageSIEM costs ~$1/GB while data lakes cost ~$0.15-0.20/GB for storageCompliance retention data should go to object storage at penny fractionsDecouple data retention from vendor tools to enable migration flexibilityCribl platform offers integrated solutions: Stream, Search, Lake, Edge componentsCustomer success: Siemens reduced 5TB to 500GB while maintaining security effectivenessParticipants:Edward Bailey – Field CISO, CriblFurther Links:Cribl WebsiteCribl on AWS MarketplaceSee how Amazon Web Services gives you the freedom to migrate, innovate, and scale your software company at https://aws.amazon.com/isv/

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app